Concept

Arithmetical hierarchy

In mathematical logic, the arithmetical hierarchy, arithmetic hierarchy or Kleene–Mostowski hierarchy (after mathematicians Stephen Cole Kleene and Andrzej Mostowski) classifies certain sets based on the complexity of formulas that define them. Any set that receives a classification is called arithmetical. The arithmetical hierarchy was invented independently by Kleene (1943) and Mostowski (1946). The arithmetical hierarchy is important in computability theory, effective descriptive set theory, and the study of formal theories such as Peano arithmetic. The Tarski–Kuratowski algorithm provides an easy way to get an upper bound on the classifications assigned to a formula and the set it defines. The hyperarithmetical hierarchy and the analytical hierarchy extend the arithmetical hierarchy to classify additional formulas and sets. The arithmetical hierarchy assigns classifications to the formulas in the language of first-order arithmetic. The classifications are denoted and for natural numbers n (including 0). The Greek letters here are lightface symbols, which indicates that the formulas do not contain set parameters. If a formula is logically equivalent to a formula with only bounded quantifiers, then is assigned the classifications and . The classifications and are defined inductively for every natural number n using the following rules: If is logically equivalent to a formula of the form , where is , then is assigned the classification . If is logically equivalent to a formula of the form , where is , then is assigned the classification . A formula is equivalent to a formula that begins with some existential quantifiers and alternates times between series of existential and universal quantifiers; while a formula is equivalent to a formula that begins with some universal quantifiers and alternates analogously. Because every first-order formula has a prenex normal form, every formula is assigned at least one classification. Because redundant quantifiers can be added to any formula, once a formula is assigned the classification or it will be assigned the classifications and for every m > n.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (2)
MATH-483: Gödel and recursivity
Gödel incompleteness theorems and mathematical foundations of computer science
MATH-318: Set theory
Set Theory as a foundational system for mathematics. ZF, ZFC and ZF with atoms. Relative consistency of the Axiom of Choice, the Continuum Hypothesis, the reals as a countable union of countable sets,
Related lectures (5)
Distributed Intelligent Systems: Energy Efficiency in Wireless Sensor Networks
Delves into energy-saving design principles in wireless sensor networks, exploring motivating applications and intelligent algorithms for energy efficiency.
Distributed Intelligent Systems: Acoustic Field Estimation
Explores acoustic field estimation using wireless sensor networks and discusses challenges in implementing AI techniques in real systems.
Show more
Related publications (12)
Related concepts (25)
Halting problem
In computability theory, the halting problem is the problem of determining, from a description of an arbitrary computer program and an input, whether the program will finish running, or continue to run forever. The halting problem is undecidable, meaning that no general algorithm exists that solves the halting problem for all possible program–input pairs. A key part of the formal statement of the problem is a mathematical definition of a computer and program, usually via a Turing machine.
Computable function
Computable functions are the basic objects of study in computability theory. Computable functions are the formalized analogue of the intuitive notion of algorithms, in the sense that a function is computable if there exists an algorithm that can do the job of the function, i.e. given an input of the function domain it can return the corresponding output. Computable functions are used to discuss computability without referring to any concrete model of computation such as Turing machines or register machines.
Turing reduction
In computability theory, a Turing reduction from a decision problem to a decision problem is an oracle machine which decides problem given an oracle for (Rogers 1967, Soare 1987). It can be understood as an algorithm that could be used to solve if it had available to it a subroutine for solving . The concept can be analogously applied to function problems. If a Turing reduction from to exists, then every algorithm for can be used to produce an algorithm for , by inserting the algorithm for at each place where the oracle machine computing queries the oracle for .
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.