In mathematics, the Plücker map embeds the Grassmannian , whose elements are k-dimensional subspaces of an n-dimensional vector space V, either real or complex, in a projective space, thereby realizing it as an algebraic variety. More precisely, the Plücker map embeds into the projectivization of the -th exterior power of . The image is algebraic, consisting of the intersection of a number of quadrics defined by the Plücker relations (see below).
The Plücker embedding was first defined by Julius Plücker in the case as a way of describing the lines in three-dimensional space (which, as projective lines in real projective space, correspond to two-dimensional subspaces of a four-dimensional vector space). The image of that embedding is the Klein quadric in RP5.
Hermann Grassmann generalized Plücker's embedding to arbitrary k and n. The homogeneous coordinates of the image of the Grassmannian under the Plücker embedding, relative to the basis in the exterior space corresponding to the natural basis in (where is the base field) are called Plücker coordinates.
Denoting by the -dimensional vector space over the field , and by
the Grassmannian of -dimensional subspaces of , the Plücker embedding is the map ι defined by
where is a basis for the element and is the projective equivalence class of the element of the th exterior power of .
This is an embedding of the Grassmannian into the projectivization . The image can be completely characterized as the intersection of a number of quadrics, the Plücker quadrics (see below), which are expressed by homogeneous quadratic relations on the Plücker coordinates (see below) that derive from linear algebra.
The bracket ring appears as the ring of polynomial functions on the exterior power.
The embedding of the Grassmannian satisfies some very simple quadratic relations usually called the Plücker relations, or Grassmann–Plücker relations. These show that the Grassmannian embeds as an algebraic subvariety of and give another method of constructing the Grassmannian.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This is an introductory course on Elliptic Partial Differential Equations. The course will cover the theory of both classical and generalized (weak) solutions of elliptic PDEs.
In geometry, Plücker coordinates, introduced by Julius Plücker in the 19th century, are a way to assign six homogeneous coordinates to each line in projective 3-space, \mathbb P^3. Because they satisfy a quadratic constraint, they establish a one-to-one correspondence between the 4-dimensional space of lines in \mathbb P^3 and points on a quadric in \mathbb P^5 (projective 5-space). A predecessor and special case of Grassmann coordinates (which describe k-dimensional linear subspaces, or flats, in an n-dimensional Euclidean space), Plücker coordinates arise naturally in geometric algebra.
In mathematics, the Grassmannian Gr(k, V) is a space that parameterizes all k-dimensional linear subspaces of the n-dimensional vector space V. For example, the Grassmannian Gr(1, V) is the space of lines through the origin in V, so it is the same as the projective space of one dimension lower than V. When V is a real or complex vector space, Grassmannians are compact smooth manifolds.
In mathematics, the exterior algebra, or Grassmann algebra, named after Hermann Grassmann, is an algebra that uses the exterior product or wedge product as its multiplication. In mathematics, the exterior product or wedge product of vectors is an algebraic construction used in geometry to study areas, volumes, and their higher-dimensional analogues. The exterior product of two vectors and , denoted by is called a bivector and lives in a space called the exterior square, a vector space that is distinct from the original space of vectors.
Stochastic phenomena are often described by Langevin equations, which serve as a mesoscopic model for microscopic dynamics. It has been known since the work of Parisi and Sourlas that reversible (or equilibrium) dynamics present supersymmetries (SUSYs). Th ...
In 4d N = 1 superconformal field theories (SCFTs) the R-symmetry current, the stress-energy tensor, and the supersymmetry currents are grouped into a single object, the Ferrara-Zumino multiplet. In this work we study the most general form of three-point fu ...