In mathematics, the Grassmannian Gr(k, V) is a space that parameterizes all k-dimensional linear subspaces of the n-dimensional vector space V. For example, the Grassmannian Gr(1, V) is the space of lines through the origin in V, so it is the same as the projective space of one dimension lower than V. When V is a real or complex vector space, Grassmannians are compact smooth manifolds. In general they have the structure of a smooth algebraic variety, of dimensions The earliest work on a non-trivial Grassmannian is due to Julius Plücker, who studied the set of projective lines in projective 3-space, equivalent to Gr(2, R4) and parameterized them by what are now called Plücker coordinates. Hermann Grassmann later introduced the concept in general. Notations for the Grassmannian vary between authors; notations include Gr_k(V), Gr(k, V), Gr_k(n), or Gr(k, n) to denote the Grassmannian of k-dimensional subspaces of an n-dimensional vector space V. By giving a collection of subspaces of some vector space a topological structure, it is possible to talk about a continuous choice of subspace or open and closed collections of subspaces; by giving them the structure of a differential manifold one can talk about smooth choices of subspace. A natural example comes from tangent bundles of smooth manifolds embedded in Euclidean space. Suppose we have a manifold M of dimension k embedded in Rn. At each point x in M, the tangent space to M can be considered as a subspace of the tangent space of Rn, which is just Rn. The map assigning to x its tangent space defines a map from M to Gr(k, n). (In order to do this, we have to translate the tangent space at each x ∈ M so that it passes through the origin rather than x, and hence defines a k-dimensional vector subspace. This idea is very similar to the Gauss map for surfaces in a 3-dimensional space.) This idea can with some effort be extended to all vector bundles over a manifold M, so that every vector bundle generates a continuous map from M to a suitably generalised Grassmannian—although various embedding theorems must be proved to show this.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (1)
MATH-436: Homotopical algebra
This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous
Related lectures (10)
Construction of the homotopy category
Explains the construction of the homotopy category of a model category using cofibrant and fibrant replacement.
Homotopical Algebra: The Homotopy Category of a Model Category
Focuses on proving the construction of the homotopy category and its properties, including preservation of composition and uniqueness of functors.
The Whitehead Lemma: Homotopy Equivalence in Model Categories
Explores the Whitehead Lemma, showing when a morphism is a weak equivalence.
Show more
Related publications (33)

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.