In theoretical physics, the pilot wave theory, also known as Bohmian mechanics, was the first known example of a hidden-variable theory, presented by Louis de Broglie in 1927. Its more modern version, the de Broglie–Bohm theory, interprets quantum mechanics as a deterministic theory, avoiding troublesome notions such as wave–particle duality, instantaneous wave function collapse, and the paradox of Schrödinger's cat. To solve these problems, the theory is inherently nonlocal.
The de Broglie–Bohm pilot wave theory is one of several interpretations of (non-relativistic) quantum mechanics.
An extension to the relativistic case with spin has been developed since the 1990s.
Louis de Broglie's early results on the pilot wave theory were presented in his thesis (1924) in the context of atomic orbitals where the waves are stationary. Early attempts to develop a general formulation for the dynamics of these guiding waves in terms of a relativistic wave equation were unsuccessful until in 1926 Schrödinger developed his non-relativistic wave equation. He further suggested that since the equation described waves in configuration space, the particle model should be abandoned. Shortly thereafter, Max Born suggested that the wave function of Schrödinger's wave equation represents the probability density of finding a particle. Following these results, de Broglie developed the dynamical equations for his pilot wave theory. Initially, de Broglie proposed a double solution approach, in which the quantum object consists of a physical wave (u-wave) in real space which has a spherical singular region that gives rise to particle-like behaviour; in this initial form of his theory he did not have to postulate the existence of a quantum particle. He later formulated it as a theory in which a particle is accompanied by a pilot wave.
De Broglie presented the pilot wave theory at the 1927 Solvay Conference. However, Wolfgang Pauli raised an objection to it at the conference, saying that it did not deal properly with the case of inelastic scattering.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Le cours comporte deux parties. Les bases de la thermodynamique des équilibres et de la cinétique des réactions sont introduites dans l'une d'elles. Les premières notions de chimie quantique sur les é
This course gives an introduction to transducers by both considering fundamental principles and their application in classical and quantum systems. The course builds up on the fundamental concept of c
Ce cours est une introduction à la mécanique quantique. En partant de son développement historique, le cours traite les notions de complémentarité quantique et le principe d'incertitude, le processus
The de Broglie–Bohm theory, also known as the pilot wave theory, Bohmian mechanics, Bohm's interpretation, and the causal interpretation, is an interpretation of quantum mechanics. In addition to the wavefunction, it also postulates an actual configuration of particles exists even when unobserved. The evolution over time of the configuration of all particles is defined by a guiding equation. The evolution of the wave function over time is given by the Schrödinger equation.
In physics, hidden-variable theories are proposals to provide explanations of quantum mechanical phenomena through the introduction of (possibly unobservable) hypothetical entities. The existence of fundamental indeterminacy for some measurements is assumed as part of the mathematical formulation of quantum mechanics; moreover, bounds for indeterminacy can be expressed in a quantitative form by the Heisenberg uncertainty principle.
In quantum mechanics, Schrödinger's cat is a thought experiment that illustrates a paradox of quantum superposition. In the thought experiment, a hypothetical cat may be considered simultaneously both alive and dead, while it is unobserved in a closed box, as a result of its fate being linked to a random subatomic event that may or may not occur. This thought experiment was devised by physicist Erwin Schrödinger in 1935 in a discussion with Albert Einstein to illustrate what Schrödinger saw as the problems of the Copenhagen interpretation of quantum mechanics.
Delves into Heisenberg's Uncertainty Principle and the wave-particle duality of quantum objects, including recent matter-wave interference experiments.
Magnonics is an exciting and rapidly growing field revolving around the study and manipulation of magnons, the low-lying collective excitations of magnetically ordered systems. This field has emerged in response to both fundamental physics interests and th ...
We demonstrate that a spin current flowing through a nanocontact into a uniaxial antiferromagnet with first- and second-order anisotropy can excite a self-localized dynamic magnetic soliton, known as a spin-wave droplet in ferromagnets. The droplet nucleat ...
In this thesis, we unveil a third design path to manipulate elastic waves within architected media, distinct from the traditional phononic crystal and locally-resonant metamaterial concepts. The core innovation lies in the concept of nonlocal resonances, d ...