In geometry, a polygon P in the plane is called monotone with respect to a straight line L, if every line orthogonal to L intersects the boundary of P at most twice. Similarly, a polygonal chain C is called monotone with respect to a straight line L, if every line orthogonal to L intersects C at most once. For many practical purposes this definition may be extended to allow cases when some edges of P are orthogonal to L, and a simple polygon may be called monotone if a line segment that connects two points in P and is orthogonal to L lies completely in P. Following the terminology for monotone functions, the former definition describes polygons strictly monotone with respect to L. Assume that L coincides with the x-axis. Then the leftmost and rightmost vertices of a monotone polygon decompose its boundary into two monotone polygonal chains such that when the vertices of any chain are being traversed in their natural order, their X-coordinates are monotonically increasing or decreasing. In fact, this property may be taken for the definition of monotone polygon and it gives the polygon its name. A convex polygon is monotone with respect to any straight line and a polygon which is monotone with respect to every straight line is convex. A linear time algorithm is known to report all directions in which a given simple polygon is monotone. It was generalized to report all ways to decompose a simple polygon into two monotone chains (possibly monotone in different directions.) Point in polygon queries with respect to a monotone polygon may be answered in logarithmic time after linear time preprocessing (to find the leftmost and rightmost vertices). A monotone polygon may be easily triangulated in linear time. For a given set of points in the plane, a bitonic tour is a monotone polygon that connects the points. The minimum perimeter bitonic tour for a given point set with respect to a fixed direction may be found in polynomial time using dynamic programming.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.