Summary
In geometry, a polygon (ˈpɒlɪɡɒn) is a plane figure made up of line segments connected to form a closed polygonal chain. The segments of a closed polygonal chain are called its edges or sides. The points where two edges meet are the polygon's vertices or corners. An n-gon is a polygon with n sides; for example, a triangle is a 3-gon. A simple polygon is one which does not intersect itself. More precisely, the only allowed intersections among the line segments that make up the polygon are the shared endpoints of consecutive segments in the polygonal chain. A simple polygon is the boundary of a region of the plane that is called a solid polygon. The interior of a solid polygon is its body, also known as a polygonal region or polygonal area. In contexts where one is concerned only with simple and solid polygons, a polygon may refer only to a simple polygon or to a solid polygon. A polygonal chain may cross over itself, creating star polygons and other self-intersecting polygons. Some sources also consider closed polygonal chains in Euclidean space to be a type of polygon (a skew polygon), even when the chain does not lie in a single plane. A polygon is a 2-dimensional example of the more general polytope in any number of dimensions. There are many more generalizations of polygons defined for different purposes. The word polygon derives from the Greek adjective πολύς (polús) 'much', 'many' and γωνία (gōnía) 'corner' or 'angle'. It has been suggested that γόνυ (gónu) 'knee' may be the origin of gon. Polygons are primarily classified by the number of sides. Polygons may be characterized by their convexity or type of non-convexity: Convex: any line drawn through the polygon (and not tangent to an edge or corner) meets its boundary exactly twice. As a consequence, all its interior angles are less than 180°. Equivalently, any line segment with endpoints on the boundary passes through only interior points between its endpoints. This condition is true for polygons in any geometry, not just Euclidean.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.