Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
In statistical classification, two main approaches are called the generative approach and the discriminative approach. These compute classifiers by different approaches, differing in the degree of statistical modelling. Terminology is inconsistent, but three major types can be distinguished, following : A generative model is a statistical model of the joint probability distribution on given observable variable X and target variable Y; A discriminative model is a model of the conditional probability of the target Y, given an observation x; and Classifiers computed without using a probability model are also referred to loosely as "discriminative". The distinction between these last two classes is not consistently made; refers to these three classes as generative learning, conditional learning, and discriminative learning, but only distinguish two classes, calling them generative classifiers (joint distribution) and discriminative classifiers (conditional distribution or no distribution), not distinguishing between the latter two classes. Analogously, a classifier based on a generative model is a generative classifier, while a classifier based on a discriminative model is a discriminative classifier, though this term also refers to classifiers that are not based on a model. Standard examples of each, all of which are linear classifiers, are: generative classifiers: naive Bayes classifier and linear discriminant analysis discriminative model: logistic regression In application to classification, one wishes to go from an observation x to a label y (or probability distribution on labels). One can compute this directly, without using a probability distribution (distribution-free classifier); one can estimate the probability of a label given an observation, (discriminative model), and base classification on that; or one can estimate the joint distribution (generative model), from that compute the conditional probability , and then base classification on that.
Alexandre Massoud Alahi, Mohamed Ossama Ahmed Abdelfattah, Mariam Ahmed Mahmoud Hegazy Hassan
Pierre Dillenbourg, Richard Lee Davis, Kevin Gonyop Kim, Thiemo Wambsganss, Wei Jiang