Summary
A pulsar (from pulsating radio source) is a highly magnetized rotating neutron star that emits beams of electromagnetic radiation out of its magnetic poles. This radiation can be observed only when a beam of emission is pointing toward Earth (similar to the way a lighthouse can be seen only when the light is pointed in the direction of an observer), and is responsible for the pulsed appearance of emission. Neutron stars are very dense and have short, regular rotational periods. This produces a very precise interval between pulses that ranges from milliseconds to seconds for an individual pulsar. Pulsars are one of the candidates for the source of ultra-high-energy cosmic rays. (See also centrifugal mechanism of acceleration.) The periods of pulsars make them very useful tools for astronomers. Observations of a pulsar in a binary neutron star system were used to indirectly confirm the existence of gravitational radiation. The first extrasolar planets were discovered around a pulsar, PSR B1257+12 in 1992. In 1983, certain types of pulsars were detected that, at that time, exceeded the accuracy of atomic clocks in keeping time. Signals from the first discovered pulsar were initially observed by Jocelyn Bell while analyzing data recorded on August 6, 1967, from a newly commissioned radio telescope that she helped build. Initially dismissed as radio interference by her supervisor and developer of the telescope, Antony Hewish, the fact that the signals always appeared at the same declination and right ascension soon ruled out a terrestrial source. On November 28, 1967, Bell and Hewish using a fast strip chart recorder resolved the signals as a series of pulses, evenly spaced every 1.337 seconds. No astronomical object of this nature had ever been observed before. On December 21, Bell discovered a second pulsar, quashing speculation that these might be signals beamed at earth from an extraterrestrial intelligence. When observations with another telescope confirmed the emission, it eliminated any sort of instrumental effects.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (7)
PHYS-439: Introduction to astroparticle physics
We present the role of particle physics in cosmology and in the description of astrophysical phenomena. We also present the methods and technologies for the observation of cosmic particles.
PHYS-643: Astrophysics VI : The variable Universe
Introduction to time-variable astrophysical objects and processes, from Space Weather to stars, black holes, and galaxies. Introduction to time-series analysis, instrumentation targeting variability,
EE-548: Audio engineering
This lecture is oriented towards the study of audio engineering, with a special focus on room acoustics applications. The learning outcomes will be the techniques for microphones and loudspeaker desig
Show more
Related lectures (32)
Degenerate Stars: White Dwarfs & Neutron Stars
Covers the characteristics and origins of white dwarfs and neutron stars, including their structure, evolution, and pulsations.
Gravitational Waves: History and Detection
Explores the history, detection, and significance of gravitational waves, covering key experiments and projects in gravitational wave astronomy.
Acoustic Simulation: Pulsating Sphere
Covers the simulation of acoustic waves in fluids using the Pressure Acoustics, Frequency Domain interface in COMSOL Multiphysics.
Show more
Related publications (34)
Related concepts (28)
Pulsar wind nebula
A pulsar wind nebula (PWN, plural PWNe), sometimes called a plerion (derived from the Greek "πλήρης", pleres, meaning "full"), is a type of nebula sometimes found inside the shell of a supernova remnant (SNR), powered by winds generated by a central pulsar. These nebulae were proposed as a class in 1976 as enhancements at radio wavelengths inside supernova remnants. They have since been found to be infrared, optical, millimetre, X-ray and gamma ray sources. Pulsar wind nebulae evolve through various phases.
Magnetar
A magnetar is a type of neutron star with an extremely powerful magnetic field (~109 to 1011 T, ~1013 to 1015 G). The magnetic-field decay powers the emission of high-energy electromagnetic radiation, particularly X-rays and gamma rays. The existence of magnetars was proposed in 1992 by Robert Duncan and Christopher Thompson. Their proposal sought to explain the properties of transient sources of gamma rays, now known as soft gamma repeaters (SGRs).
X-ray binary
X-ray binaries are a class of binary stars that are luminous in X-rays. The X-rays are produced by matter falling from one component, called the donor (usually a relatively normal star), to the other component, called the accretor, which is either a neutron star or black hole. The infalling matter releases gravitational potential energy, up to 30 percent of its rest mass, as X-rays. (Hydrogen fusion releases only about 0.7 percent of rest mass.
Show more