Summary
A magnetar is a type of neutron star with an extremely powerful magnetic field (~109 to 1011 T, ~1013 to 1015 G). The magnetic-field decay powers the emission of high-energy electromagnetic radiation, particularly X-rays and gamma rays. The existence of magnetars was proposed in 1992 by Robert Duncan and Christopher Thompson. Their proposal sought to explain the properties of transient sources of gamma rays, now known as soft gamma repeaters (SGRs). Over the following decade, the magnetar hypothesis became widely accepted, and was extended to explain anomalous X-ray pulsars (AXPs). , 24 confirmed magnetars were known. It has been suggested that magnetars are the source of fast radio bursts (FRB), in particular as a result of findings in 2020 by scientists using the Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope. Like other neutron stars, magnetars are around in diameter, and have a mass of about 1.4 solar masses. They are formed by the collapse of a star with a mass 10–25 times that of the Sun. The density of the interior of a magnetar is such that a tablespoon of its substance would have a mass of over 100 million tons. Magnetars are differentiated from other neutron stars by having even stronger magnetic fields, and by rotating more slowly in comparison. Most observed magnetars rotate once every two to ten seconds, whereas typical neutron stars, observed as radio pulsars, rotate one to ten times per second. A magnetar's magnetic field gives rise to very strong and characteristic bursts of X-rays and gamma rays. The active life of a magnetar is short compared to other celestial bodies. Their strong magnetic fields decay after about 10,000 years, after which activity and strong X-ray emission cease. Given the number of magnetars observable today, one estimate puts the number of inactive magnetars in the Milky Way at 30 million or more. Starquakes triggered on the surface of the magnetar disturb the magnetic field which encompasses it, often leading to extremely powerful gamma-ray flare emissions which have been recorded on Earth in 1979, 1998 and 2004.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related publications (32)
Related MOOCs (1)
The Radio Sky I: Science and Observations
Be captivated by the exotic objects that populate the Radio Sky and gain a solid understanding of their physics and the fundamental techniques we use to observe them.