The history of life on Earth traces the processes by which living and fossil organisms evolved, from the earliest emergence of life to present day. Earth formed about 4.5 billion years ago (abbreviated as Ga, for gigaannum) and evidence suggests that life emerged prior to 3.7 Ga. Although there is some evidence of life as early as 4.1 to 4.28 Ga, it remains controversial due to the possible non-biological formation of the purported fossils.
The similarities among all known present-day species indicate that they have diverged through the process of evolution from a common ancestor. Only a very small percentage of species have been identified: one estimate claims that Earth may have 1 trillion species. However, only 1.75–1.8 million have been named and 1.8 million documented in a central database. These currently living species represent less than one percent of all species that have ever lived on Earth.
The earliest evidence of life comes from biogenic carbon signatures and stromatolite fossils discovered in 3.7 billion-year-old metasedimentary rocks from western Greenland. In 2015, possible "remains of biotic life" were found in 4.1 billion-year-old rocks in Western Australia. In March 2017, putative evidence of possibly the oldest forms of life on Earth was reported in the form of fossilized microorganisms discovered in hydrothermal vent precipitates in the Nuvvuagittuq Belt of Quebec, Canada, that may have lived as early as 4.28 billion years ago, not long after the oceans formed 4.4 billion years ago, and not long after the formation of the Earth 4.54 billion years ago.
Microbial mats of coexisting bacteria and archaea were the dominant form of life in the early Archean eon and many of the major steps in early evolution are thought to have taken place in this environment. The evolution of photosynthesis by cyanobacteria, around 3.5 Ga, eventually led to a buildup of its waste product, oxygen, in the ocean and then the atmosphere after depleting all available reductant substances on the Earth's surface, leading to the Great Oxygenation Event, beginning around 2.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The evolution of mammals has passed through many stages since the first appearance of their synapsid ancestors in the Pennsylvanian sub-period of the late Carboniferous period. By the mid-Triassic, there were many synapsid species that looked like mammals. The lineage leading to today's mammals split up in the Jurassic; synapsids from this period include Dryolestes, more closely related to extant placentals and marsupials than to monotremes, as well as Ambondro, more closely related to monotremes.
The evolution of plants has resulted in a wide range of complexity, from the earliest algal mats, through multicellular marine and freshwater green algae, terrestrial bryophytes, lycopods and ferns, to the complex gymnosperms and angiosperms (flowering plants) of today. While many of the earliest groups continue to thrive, as exemplified by red and green algae in marine environments, more recently derived groups have displaced previously ecologically dominant ones; for example, the ascendance of flowering plants over gymnosperms in terrestrial environments.
Paleobiology is a scientific journal promoting the integration of biology and conventional paleontology, with emphasis placed on biological or paleobiological processes and patterns. It attracts papers of interest to more than one discipline, and occasionally publishes research on recent organisms when this is of interest to paleontologists.
The arms race between viruses and their hosts shaped the evolutionary history and the genome composition of both parties. Restriction factors are the first-line antiviral effectors encoded by the host genomes and are often conserved through evolution to pr ...
In the European Union, building construction accounts for 40% of materials consumption, 40% of overall energy consumption, and 40% of waste production [1]. It is therefore essential to reduce the environmental impact of these structures. Various levers are ...
2023
,
The notion that mitochondria cannot be lost was shattered with the report of an oxymonad Monocercomonoides exilis, the first eukaryote arguably without any mitochondrion. Yet, questions remain about whether this extends beyond the single species and how th ...