A betatron is a type of cyclic particle accelerator for electrons. It consists of a torus-shaped vacuum chamber with an electron source. Circling the torus is an iron transformer core with a wire winding around it. The device functions similarly to a transformer, with the electrons in the torus-shaped vacuum chamber as its secondary coil. An alternating current in the primary coils accelerates electrons in the vacuum around a circular path. The betatron was the first machine capable of producing electron beams at energies higher than could be achieved with a simple electron gun, and the first circular accelerator in which particles orbited at a constant radius.
The concept of the betatron had been proposed as early as 1922 by Joseph Slepian. Through the 1920s and 30s a number of theoretical problems related to the device were considered by scientists including Rolf Wideroe, Ernest Walton, and Max Steenbeck. The first working betatron was constructed by Donald Kerst at the University of Illinois Urbana-Champaign in 1940.
After the discovery in the 1800s of Faraday's law of induction, which showed that an electromotive force could be generated by a changing magnetic field, several scientists speculated that this effect could be used to accelerate charged particles to high energies. Joseph Slepian proposed a device in 1922 that would use permanent magnets to steer the beam while it was accelerated by a changing magnetic field. However, he did not pursue the idea past the theoretical stage.
In the late 1920s, Gregory Breit and Merle Tuve at the Bureau of Terrestrial Magnetism constructed a working device that used varying magnetic fields to accelerate electrons. Their device placed two solenoidal magnets next to one another and fired electrons from a gun at the outer edge of the magnetic field. As the field was increased, the electrons accelerated in to strike a target at the center of the field, producing X-rays. This device took a step towards the betatron concept by shaping the magnetic field to keep the particles focused in the plane of acceleration.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Accelerator physics covers a wide range of very exciting topics. This course presents basic physics ideas and the technologies underlying the workings of modern accelerators. An overview of the new id
A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams. Large accelerators are used for fundamental research in particle physics. The largest accelerator currently active is the Large Hadron Collider (LHC) near Geneva, Switzerland, operated by the CERN. It is a collider accelerator, which can accelerate two beams of protons to an energy of 6.5 TeV and cause them to collide head-on, creating center-of-mass energies of 13 TeV.
A synchrotron is a particular type of cyclic particle accelerator, descended from the cyclotron, in which the accelerating particle beam travels around a fixed closed-loop path. The magnetic field which bends the particle beam into its closed path increases with time during the accelerating process, being synchronized to the increasing kinetic energy of the particles. The synchrotron is one of the first accelerator concepts to enable the construction of large-scale facilities, since bending, beam focusing and acceleration can be separated into different components.
A linear particle accelerator (often shortened to linac) is a type of particle accelerator that accelerates charged subatomic particles or ions to a high speed by subjecting them to a series of oscillating electric potentials along a linear beamline. The principles for such machines were proposed by Gustav Ising in 1924, while the first machine that worked was constructed by Rolf Widerøe in 1928 at the RWTH Aachen University.
With preparation of Hi-Lumi LHC fully underway, and the FCC machines under study, accelerators will reach unprecedented energies and along with it very large amount of synchrotron radiation (SR). This will desorb photoelectrons and molecules from accelerat ...
EPFL2016
The grazing function g is introduced—a synchrobetatron optical quantity that is analogous (and closely connected) to the Twiss and dispersion functions β, α, η, and η′. It parametrizes the rate of change of total angle with respect to synchrotron amplitude ...
American Physical Society2009
In this article the authors present techniques which allow the microfluidic design of alginate microgels with layer composition on a chip. The hydrogel is created by combining two laminar flows of the gel precursor solutions-a calcium solution and an algin ...