In the mathematical field of descriptive set theory, a subset of a Polish space is projective if it is for some positive integer . Here is
if is analytic
if the complement of , , is
if there is a Polish space and a subset such that is the projection of onto ; that is,
The choice of the Polish space in the third clause above is not very important; it could be replaced in the definition by a fixed uncountable Polish space, say Baire space or Cantor space or the real line.
There is a close relationship between the relativized analytical hierarchy on subsets of Baire space (denoted by lightface letters and ) and the projective hierarchy on subsets of Baire space (denoted by boldface letters and ). Not every subset of Baire space is . It is true, however, that if a subset X of Baire space is then there is a set of natural numbers A such that X is . A similar statement holds for sets. Thus the sets classified by the projective hierarchy are exactly the sets classified by the relativized version of the analytical hierarchy. This relationship is important in effective descriptive set theory.
A similar relationship between the projective hierarchy and the relativized analytical hierarchy holds for subsets of Cantor space and, more generally, subsets of any effective Polish space.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In the mathematical field of descriptive set theory, a pointclass is a collection of sets of points, where a point is ordinarily understood to be an element of some perfect Polish space. In practice, a pointclass is usually characterized by some sort of definability property; for example, the collection of all open sets in some fixed collection of Polish spaces is a pointclass. (An open set may be seen as in some sense definable because it cannot be a purely arbitrary collection of points; for any point in the set, all points sufficiently close to that point must also be in the set.
In mathematical logic, descriptive set theory (DST) is the study of certain classes of "well-behaved" subsets of the real line and other Polish spaces. As well as being one of the primary areas of research in set theory, it has applications to other areas of mathematics such as functional analysis, ergodic theory, the study of operator algebras and group actions, and mathematical logic. Descriptive set theory begins with the study of Polish spaces and their Borel sets.
Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concerned with those that are relevant to mathematics as a whole. The modern study of set theory was initiated by the German mathematicians Richard Dedekind and Georg Cantor in the 1870s. In particular, Georg Cantor is commonly considered the founder of set theory.