In mathematics, the bounded inverse theorem ( also called inverse mapping theorem or Banach isomorphism theorem) is a result in the theory of bounded linear operators on Banach spaces. It states that a bijective bounded linear operator T from one Banach space to another has bounded inverse T−1. It is equivalent to both the open mapping theorem and the closed graph theorem. This theorem may not hold for normed spaces that are not complete. For example, consider the space X of sequences x : N → R with only finitely many non-zero terms equipped with the supremum norm. The map T : X → X defined by is bounded, linear and invertible, but T−1 is unbounded. This does not contradict the bounded inverse theorem since X is not complete, and thus is not a Banach space. To see that it's not complete, consider the sequence of sequences x(n) ∈ X given by converges as n → ∞ to the sequence x(∞) given by which has all its terms non-zero, and so does not lie in X. The completion of X is the space of all sequences that converge to zero, which is a (closed) subspace of the lp space l∞(N), which is the space of all bounded sequences. However, in this case, the map T is not onto, and thus not a bijection. To see this, one need simply note that the sequence is an element of , but is not in the range of . (Section 8.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.