In mathematics, the bounded inverse theorem ( also called inverse mapping theorem or Banach isomorphism theorem) is a result in the theory of bounded linear operators on Banach spaces. It states that a bijective bounded linear operator T from one Banach space to another has bounded inverse T−1. It is equivalent to both the open mapping theorem and the closed graph theorem. This theorem may not hold for normed spaces that are not complete. For example, consider the space X of sequences x : N → R with only finitely many non-zero terms equipped with the supremum norm. The map T : X → X defined by is bounded, linear and invertible, but T−1 is unbounded. This does not contradict the bounded inverse theorem since X is not complete, and thus is not a Banach space. To see that it's not complete, consider the sequence of sequences x(n) ∈ X given by converges as n → ∞ to the sequence x(∞) given by which has all its terms non-zero, and so does not lie in X. The completion of X is the space of all sequences that converge to zero, which is a (closed) subspace of the lp space l∞(N), which is the space of all bounded sequences. However, in this case, the map T is not onto, and thus not a bijection. To see this, one need simply note that the sequence is an element of , but is not in the range of . (Section 8.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.