Euler lineIn geometry, the Euler line, named after Leonhard Euler (ˈɔɪlər), is a line determined from any triangle that is not equilateral. It is a central line of the triangle, and it passes through several important points determined from the triangle, including the orthocenter, the circumcenter, the centroid, the Exeter point and the center of the nine-point circle of the triangle. The concept of a triangle's Euler line extends to the Euler line of other shapes, such as the quadrilateral and the tetrahedron.
Isogonal conjugatenotoc In geometry, the isogonal conjugate of a point P with respect to a triangle △ABC is constructed by reflecting the lines PA, PB, PC about the angle bisectors of A, B, C respectively. These three reflected lines concur at the isogonal conjugate of P. (This definition applies only to points not on a sideline of triangle △ABC.) This is a direct result of the trigonometric form of Ceva's theorem. The isogonal conjugate of a point P is sometimes denoted by P*. The isogonal conjugate of P* is P.
Line segmentIn geometry, a line segment is a part of a straight line that is bounded by two distinct end points, and contains every point on the line that is between its endpoints. The length of a line segment is given by the Euclidean distance between its endpoints. A closed line segment includes both endpoints, while an open line segment excludes both endpoints; a half-open line segment includes exactly one of the endpoints. In geometry, a line segment is often denoted using a line above the symbols for the two endpoints (such as ).
SymmedianIn geometry, symmedians are three particular lines associated with every triangle. They are constructed by taking a median of the triangle (a line connecting a vertex with the midpoint of the opposite side), and reflecting the line over the corresponding angle bisector (the line through the same vertex that divides the angle there in half). The angle formed by the symmedian and the angle bisector has the same measure as the angle between the median and the angle bisector, but it is on the other side of the angle bisector.
Nine-point centerIn geometry, the nine-point center is a triangle center, a point defined from a given triangle in a way that does not depend on the placement or scale of the triangle. It is so called because it is the center of the nine-point circle, a circle that passes through nine significant points of the triangle: the midpoints of the three edges, the feet of the three altitudes, and the points halfway between the orthocenter and each of the three vertices. The nine-point center is listed as point X(5) in Clark Kimberling's Encyclopedia of Triangle Centers.
Isodynamic pointIn Euclidean geometry, the isodynamic points of a triangle are points associated with the triangle, with the properties that an inversion centered at one of these points transforms the given triangle into an equilateral triangle, and that the distances from the isodynamic point to the triangle vertices are inversely proportional to the opposite side lengths of the triangle. Triangles that are similar to each other have isodynamic points in corresponding locations in the plane, so the isodynamic points are triangle centers, and unlike other triangle centers the isodynamic points are also invariant under Möbius transformations.
Nagel pointIn geometry, the Nagel point (named for Christian Heinrich von Nagel) is a triangle center, one of the points associated with a given triangle whose definition does not depend on the placement or scale of the triangle. It is the point of concurrency of all three of the triangle's splitters. Given a triangle △ABC, let T_A, T_B, T_C be the extouch points in which the A-excircle meets line BC, the B-excircle meets line CA, and the C-excircle meets line AB, respectively. The lines AT_A, BT_B, CT_C concur in the Nagel point N of triangle △ABC.
Isotomic conjugateIn geometry, the isotomic conjugate of a point P with respect to a triangle △ABC is another point, defined in a specific way from P and △ABC: If the base points of the lines PA, PB, PC on the sides opposite A, B, C are reflected about the midpoints of their respective sides, the resulting lines intersect at the isotomic conjugate of P. We assume that P is not collinear with any two vertices of △ABC. Let A', B', C' be the points in which the lines AP, BP, CP meet sidelines BC, CA, AB (extended if necessary).
Concurrent linesIn geometry, lines in a plane or higher-dimensional space are concurrent if they intersect at a single point. They are in contrast to parallel lines. In a triangle, four basic types of sets of concurrent lines are altitudes, angle bisectors, medians, and perpendicular bisectors: A triangle's altitudes run from each vertex and meet the opposite side at a right angle. The point where the three altitudes meet is the orthocenter. Angle bisectors are rays running from each vertex of the triangle and bisecting the associated angle.
Acute and obtuse trianglesAn acute triangle (or acute-angled triangle) is a triangle with three acute angles (less than 90°). An obtuse triangle (or obtuse-angled triangle) is a triangle with one obtuse angle (greater than 90°) and two acute angles. Since a triangle's angles must sum to 180° in Euclidean geometry, no Euclidean triangle can have more than one obtuse angle. Acute and obtuse triangles are the two different types of oblique triangles — triangles that are not right triangles because they do not have a 90° angle.