**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Line segment

Summary

In geometry, a line segment is a part of a straight line that is bounded by two distinct end points, and contains every point on the line that is between its endpoints. The length of a line segment is given by the Euclidean distance between its endpoints. A closed line segment includes both endpoints, while an open line segment excludes both endpoints; a half-open line segment includes exactly one of the endpoints. In geometry, a line segment is often denoted using a line above the symbols for the two endpoints (such as {{overline|AB}}).
Examples of line segments include the sides of a triangle or square. More generally, when both of the segment's end points are vertices of a polygon or polyhedron, the line segment is either an edge (of that polygon or polyhedron) if they are adjacent vertices, or a diagonal. When the end points both lie on a curve (such as a circle), a line segment is called a chord (of that curve).
In real or complex vector spaces
If

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related publications (16)

Loading

Loading

Loading

Related people (1)

Related units

No results

Related concepts (76)

Geometry

Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest b

Circle

A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. The distance between any point of the circle and the centre is called the radius.

Line (geometry)

In geometry, a line is an infinitely long object with no width, depth, or curvature. Thus, lines are one-dimensional objects, though they may exist embedded in two, three, or higher dimensional spa

Related courses (30)

MATH-203(a): Analysis III

Le cours étudie les concepts fondamentaux de l'analyse vectorielle et de l'analyse de Fourier-Laplace en vue de leur utilisation pour résoudre des problèmes pluridisciplinaires d'ingénierie scientifique.

MATH-203(c): Analysis III

Le cours étudie les concepts fondamentaux de l'analyse vectorielle et l'analyse de Fourier en vue de leur utilisation pour
résoudre des problèmes pluridisciplinaires d'ingénierie scientifique.

MATH-111(en): Linear algebra (english)

The purpose of the course is to introduce the basic notions of linear algebra and its applications.

Michal Lason, Bartosz Maria Walczak

In the 1970s Erdos asked whether the chromatic number of intersection graphs of line segments in the plane is bounded by a function of their clique number. We show the answer is no. Specifically, for each positive integer k we construct a triangle-free family of line segments in the plane with chromatic number greater than k. Our construction disproves a conjecture of Scott that graphs excluding induced subdivisions of any fixed graph have chromatic number bounded by a function of their clique number. (C) 2013 Elsevier Inc. All rights reserved.

We introduce a novel and general approach for digitalization of line segments in the plane that satisfies a set of axioms naturally arising from Euclidean axioms. In particular, we show how to derive such a system of digital segments from any total order on the integers. As a consequence, using a well-chosen total order, we manage to define a system of digital segments such that all digital segments are, in Hausdorff metric, optimally close to their corresponding Euclidean segments, thus giving an explicit construction that resolves the main question of Chun et al. (Discrete Comput. Geom. 42(3):359-378, 2009).

2012Recently, Pawlik et al. have shown that triangle-free intersection graphs of line segments in the plane can have arbitrarily large chromatic number. Specifically, they construct triangle-free segment intersection graphs with chromatic number Θ(log log n). Essentially the same construction produces Θ(loglogn)-chromatic triangle-free intersection graphs of a variety of other geometric shapes-those belonging to any class of compact arc-connected subsets of ℝ2 closed under horizontal scaling, vertical scaling, and translation, except for axis-aligned rectangles. We show that this construction is asymptotically optimal for the class of rectangular frames (boundaries of axis-aligned rectangles). Namely, we prove that triangle-free intersection graphs of rectangular frames in the plane have chromatic number O(loglogn), improving on the previous bound of O(logn). To this end, we exploit a relationship between off-line coloring of rectangular frame intersection graphs and on-line coloring of interval overlap graphs. Our coloring method decomposes the graph into a bounded number of subgraphs with a tree-like structure that "encodes" strategies of the adversary in the on-line coloring problem, and colors these subgraphs with O(loglogn) colors using a combination of techniques from on-line algorithms (first-fit) and data structure design (heavy-light decomposition). © 2013 Springer-Verlag.

2013Related lectures (47)