In geometry, a line segment is a part of a straight line that is bounded by two distinct end points, and contains every point on the line that is between its endpoints. The length of a line segment is given by the Euclidean distance between its endpoints. A closed line segment includes both endpoints, while an open line segment excludes both endpoints; a half-open line segment includes exactly one of the endpoints. In geometry, a line segment is often denoted using a line above the symbols for the two endpoints (such as ).
Examples of line segments include the sides of a triangle or square. More generally, when both of the segment's end points are vertices of a polygon or polyhedron, the line segment is either an edge (of that polygon or polyhedron) if they are adjacent vertices, or a diagonal. When the end points both lie on a curve (such as a circle), a line segment is called a chord (of that curve).
If V is a vector space over \R or \C, and L is a subset of V, then L is a line segment if L can be parameterized as
for some vectors where v is nonzero. The endpoints of L are then the vectors u and u + v.
Sometimes, one needs to distinguish between "open" and "closed" line segments. In this case, one would define a closed line segment as above, and an open line segment as a subset L that can be parametrized as
for some vectors
Equivalently, a line segment is the convex hull of two points. Thus, the line segment can be expressed as a convex combination of the segment's two end points.
In geometry, one might define point B to be between two other points A and C, if the distance added to the distance is equal to the distance . Thus in \R^2, the line segment with endpoints and is the following collection of points:
A line segment is a connected, non-empty set.
If V is a topological vector space, then a closed line segment is a closed set in V. However, an open line segment is an open set in V if and only if V is one-dimensional.
More generally than above, the concept of a line segment can be defined in an ordered geometry.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In geometry, a simple polygon is a polygon that does not intersect itself and has no holes. That is, they are piecewise-linear Jordan curves consisting of finitely many line segments. They include as special cases the convex polygons, star-shaped polygons, and monotone polygons. The sum of external angles of a simple polygon is . Every simple polygon with sides can be triangulated by of its diagonals, and by the art gallery theorem its interior is visible from some of its vertices.
In geometry, a polygonal chain is a connected series of line segments. More formally, a polygonal chain P is a curve specified by a sequence of points called its vertices. The curve itself consists of the line segments connecting the consecutive vertices. A simple polygonal chain is one in which only consecutive segments intersect and only at their endpoints. A closed polygonal chain is one in which the first vertex coincides with the last one, or, alternatively, the first and the last vertices are also connected by a line segment.
In geometry, a triangle center or triangle centre is a point in the triangle's plane that is in some sense in the middle of the triangle. For example, the centroid, circumcenter, incenter and orthocenter were familiar to the ancient Greeks, and can be obtained by simple constructions. Each of these classical centers has the property that it is invariant (more precisely equivariant) under similarity transformations.
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
This course is an introduction to linear and discrete optimization.Warning: This is a mathematics course! While much of the course will be algorithmic in nature, you will still need to be able to p
Ce cours entend exposer les fondements de la géométrie à un triple titre :
1/ de technique mathématique essentielle au processus de conception du projet,
2/ d'objet privilégié des logiciels de concept
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications.
The expectation value of a smooth conformal line defect in a CFT is a conformal invariant functional of its path in space-time. For example, in large N holographic theories, these fundamental observables are dual to the open-string partition function in Ad ...
New York2024
, ,
Region extraction is a very common task in both Computer Science and Engineering with several applications in object recognition and motion analysis, among others. Most of the literature focuses on regions delimited by straight lines, often in the special ...
Finite simplex lattice models are used in different branches of science, e.g., in condensed-matter physics, when studying frustrated magnetic systems and non-Hermitian localization phenomena; or in chemistry, when describing experiments with mixtures. An n ...