In graph theory, an area of mathematics, a claw-free graph is a graph that does not have a claw as an induced subgraph.
A claw is another name for the complete bipartite graph K1,3 (that is, a star graph comprising three edges, three leaves, and a central vertex). A claw-free graph is a graph in which no induced subgraph is a claw; i.e., any subset of four vertices has other than only three edges connecting them in this pattern. Equivalently, a claw-free graph is a graph in which the neighborhood of any vertex is the complement of a triangle-free graph.
Claw-free graphs were initially studied as a generalization of line graphs, and gained additional motivation through three key discoveries about them: the fact that all claw-free connected graphs of even order have perfect matchings, the discovery of polynomial time algorithms for finding maximum independent sets in claw-free graphs, and the characterization of claw-free perfect graphs. They are the subject of hundreds of mathematical research papers and several surveys.
The line graph L(G) of any graph G is claw-free; L(G) has a vertex for every edge of G, and vertices are adjacent in L(G) whenever the corresponding edges share an endpoint in G. A line graph L(G) cannot contain a claw, because if three edges e1, e2, and e3 in G all share endpoints with another edge e4 then by the pigeonhole principle at least two of e1, e2, and e3 must share one of those endpoints with each other. Line graphs may be characterized in terms of nine forbidden subgraphs; the claw is the simplest of these nine graphs. This characterization provided the initial motivation for studying claw-free graphs.
The de Bruijn graphs (graphs whose vertices represent n-bit binary strings for some n, and whose edges represent (n − 1)-bit overlaps between two strings) are claw-free. One way to show this is via the construction of the de Bruijn graph for n-bit strings as the line graph of the de Bruijn graph for (n − 1)-bit strings.
The complement of any triangle-free graph is claw-free.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In graph theory, a branch of mathematics, many important families of graphs can be described by a finite set of individual graphs that do not belong to the family and further exclude all graphs from the family which contain any of these forbidden graphs as (induced) subgraph or minor. A prototypical example of this phenomenon is Kuratowski's theorem, which states that a graph is planar (can be drawn without crossings in the plane) if and only if it does not contain either of two forbidden graphs, the complete graph K_5 and the complete bipartite graph K_3,3.
In graph theory, a branch of mathematics, list coloring is a type of graph coloring where each vertex can be restricted to a list of allowed colors. It was first studied in the 1970s in independent papers by Vizing and by Erdős, Rubin, and Taylor. Given a graph G and given a set L(v) of colors for each vertex v (called a list), a list coloring is a choice function that maps every vertex v to a color in the list L(v). As with graph coloring, a list coloring is generally assumed to be proper, meaning no two adjacent vertices receive the same color.
In graph theory, the strong perfect graph theorem is a forbidden graph characterization of the perfect graphs as being exactly the graphs that have neither odd holes (odd-length induced cycles of length at least 5) nor odd antiholes (complements of odd holes). It was conjectured by Claude Berge in 1961. A proof by Maria Chudnovsky, Neil Robertson, Paul Seymour, and Robin Thomas was announced in 2002 and published by them in 2006.
The course introduces the paradigm of quantum computation in an axiomatic way. We introduce the notion of quantum bit, gates, circuits and we treat the most important quantum algorithms. We also touch
This course covers the statistical physics approach to computer science problems ranging from graph theory and constraint satisfaction to inference and machine learning. In particular the replica and
This thesis focuses on designing spectral tools for graph clustering in sublinear time. With the emergence of big data, many traditional polynomial time, and even linear time algorithms have become prohibitively expensive. Processing modern datasets requir ...
We prove that for any triangle-free intersection graph of n axis-parallel line segments in the plane, the independence number alpha of this graph is at least alpha n/4+ohm(root n). We complement this with a construction of a graph in this class satisfying ...
Listing all maximal cliques of a given graph has important applications in the analysis of social and biological networks. Parallelisation of maximal clique enumeration (MCE) algorithms on modern manycore processors is challenging due to the task-level par ...