**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Random walks and forbidden minors III: poly(d epsilon(-1))-time partition oracles for minor-free graph classes

Abstract

Consider the family of bounded degree graphs in any minor-closed family (such as planar graphs). Let d be the degree bound and n be the number of vertices of such a graph. Graphs in these classes have hyperfinite decompositions, where, one removes a small fraction of edges of the graph controlled by a proximity parameter to get connected components of size independent of n. An important tool for sublinear algorithms and property testing for such classes is the partition oracle, introduced by the seminal work of Hassidim-Kelner-Nguyen-Onak (FOCS 2009). A partition oracle is a local procedure that gives consistent access to a hyperfinite decomposition, without any preprocessing. Given a query vertex v, the partition oracle outputs the component containing v in time independent of n. All the answers are consistent with a single hyperfinite decomposition. The partition oracle of Hassidim et al. runs in time exponential in the proximity parameter per query. They pose the open problem of whether partition oracles which run in time polynomial in reciprocal of proximity parameter can be built. Levi-Ron (ICALP 2013) give a refinement of the previous approach, to get a partition oracle that runs in quasipolynomial time per query. In this paper, we resolve this open problem and give polynomial time partition oracles (in reciprocal of proximity parameter) for bounded degree graphs in any minor-closed family. Unlike the previous line of work based on combinatorial methods, we employ techniques from spectral graph theory. We build on a recent spectral graph theoretical toolkit for minor-closed graph families, introduced by the authors to develop efficient property testers. A consequence of our result is an efficient property tester for any monotone and additive with running time property of minor-closed families (such as bipartite planar graphs). Our result also gives query efficient algorithms for additive approximations for problems such as maximum matching, minimum vertex cover, maximum independent set, and minimum dominating set for these graph families.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (11)

Time complexity

In computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by the algorithm, supposing that each elementary operation takes a fixed amount of time to perform. Thus, the amount of time taken and the number of elementary operations performed by the algorithm are taken to be related by a constant factor.

Planar graph

In graph theory, a planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In other words, it can be drawn in such a way that no edges cross each other. Such a drawing is called a plane graph or planar embedding of the graph. A plane graph can be defined as a planar graph with a mapping from every node to a point on a plane, and from every edge to a plane curve on that plane, such that the extreme points of each curve are the points mapped from its end nodes, and all curves are disjoint except on their extreme points.

Graph minor

In graph theory, an undirected graph H is called a minor of the graph G if H can be formed from G by deleting edges, vertices and by contracting edges. The theory of graph minors began with Wagner's theorem that a graph is planar if and only if its minors include neither the complete graph K5 nor the complete bipartite graph K3,3. The Robertson–Seymour theorem implies that an analogous forbidden minor characterization exists for every property of graphs that is preserved by deletions and edge contractions.