Philippe GILLET completed his undergraduate studies in Earth Science at Ecole normale supérieure de la rue dUlm (Paris). In 1983 he obtained a PhD in Geophysics at Université de Paris VII and joined Université de Rennes I as an assistant. Having obtained a State Doctorate in 1988, he became a Professor at this same university, which he left in 1992 to join Ecole normale supérieure de Lyon.
The first part of his research career was devoted to the formation of mountain ranges particularly of the Alps. In parallel, he developed experimental techniques (diamond anvil cells) to recreate the pressure and temperature prevailing deep inside planets in the lab. These experiments aim at understanding what materials make up the unreachable depths of planets in the solar system.
In 1997, Gillet started investigating extraterrestrial matter. He was involved in describing meteorites coming from Mars, the moon or planets which have disappeared today and explaining how these were expelled from their original plant by enormous shocks which propelled them to Earth. He also participated in the NASA Stardust program and contributed to identify comet grains collected from the tail of Comet Wild 2 and brought back to Earth. These grains represent the initial minerals in our solar system and were formed over 4.5 billion years ago. He has also worked on the following subjects:
Interactions between bacteria and minerals.
Solid to glass transition under pressure.
Experimental techniques: laser-heated diamond anvil cell, Raman spectroscopy, X-ray diffraction with synchrotron facilities, electron microscopy.
Philippe Gillet is also active in science and education management. He was the Director of the CNRS Institut National des Sciences de lUnivers (France), the President of the French synchrotron facility SOLEIL and of the French National Research Agency (2007), and the Director of Ecole normale supérieure de Lyon. Before joining EPFL he was the Chief of Staff of the French Minister of Higher Education and Research.
Selected publications:
Ferroir, T., L. Dubrovinsky, A. El Goresy, A. Simionovici, T. Nakamura, and P. Gillet (2010), Carbon polymorphism in shocked meteorites: Evidence for new natural ultrahard phases, Earth and Planetary Science Letters, 290(1-2), 150-154.
Barrat J.A., Bohn M., Gillet Ph., Yamaguchi A. (2009) Evidence for K-rich terranes on Vesta from impact spherules. Meteoritics & Planetary Science, 44, 359374.
Brownlee D, Tsou P, Aleon J, et al. (2006) Comet 81P/Wild 2 under a microscope. Science, 314, 1711-1716.
Beck P., Gillet Ph., El Goresy A., and Mostefaoui S. (2005) Timescales of shock processes in chondrites and Martian meteorites. Nature 435, 1071-1074.
Blase X., Gillet Ph., San Miguel A. and Mélinon P. (2004) Exceptional ideal strength of carbon clathrates. Phys. Rev. Lett. 92, 215505-215509.
Gillet Ph. (2002) Application of vibrational spectroscopy to geology. In Handbook of vibrational spectroscopy, Vol. 4 (ed. J. M. Chalmers and P. R. Griffiths), pp. 1-23. John Wiley & Sons.
Gillet Ph., Chen C., Dubrovinsky L., and El Goresy A. (2000) Natural NaAlSi3O8 -hollandite in the shocked Sixiangkou meteorite. Science 287, 1633-1636.
EDUCATION
Ph.D., Chemistry, University of Wisconsin, Madison, 1983
B.S., Chemistry, cum laude, Rensselaer Polytechnic Institute, 1978
ACADEMIC AND ADMINISTRATIVE POSITIONS
Dean, Faculty of Basic Sciences, EPFL, 2004-present
Head, Department of Chemistry, EPFL, 1997-2004
Professor of Chemistry, EPFL, 1994-present
Professor of Chemistry, University of Rochester, 1993-1994
Assistant Professor of Chemistry, University of Rochester, 1986-1992
Research Associate, The James Franck Institute, University of Chicago, 1984-1986
Alfredo Pasquarello studied physics at the
Scuola Normale Superiore
of Pisa and at the University of Pisa, obtaining their respective degrees in 1986. He obtained a doctoral degree at the EPFL in 1991 with a thesis on
Multiphoton Transitions in Solids
. Then, he moved to Bell Laboratories at Murray Hill (New Jersey), where he carried out postdoctoral research on the magnetic properties of carbon fullerenes. In 1993, he joined the Institute for Numerical Research in the Physics of Materials (IRRMA), where his activity involved first-principles simulation methods. In 1998, he was awarded the EPFL Latsis Prize for his research work on disordered silica materials. Succeeding in grant programs of the Swiss National Science Foundation, he then set up his own research group at IRRMA. In July 2003, he is appointed Professor in Theoretical Condensed Matter Physics at EPFL. Currently, he leads the Chair of Atomic Scale Simulation.
2020-current Full Professor at the Institute of Bioengineering, EPFL, Switzerland2013-2020 Associate Professor (with tenure) at the Institute of Bioengineering, EPFL, Switzerland 2013 Associate Professor (with tenure) at Electrical and Computer Engineering Department of Boston University, USA 2007-2013 Assistant Professor (tenure-track) at Electrical and Computer Engineering Department of Boston University, USA 2007 Post-doctoral Fellow at Center for Engineering in Medicine of Harvard Medical School, USA 2000-2007 PhD. in Applied Physics at Stanford University, USA 1996-2000 B.S. in Physics at Bilkent University, Turkey
Education
PhD., Materials Science, summa cum laude, Université de Nantes, 2002
M.S., Chemistry, Université des Sciences et Technologies de Lille, 1999
Academic positions
Head of the Crystal Growth Facility, EPFL, 2012-present
Research Associate, Laboratoire de Physique de la Matière Complexe, EPFL, 2003-2012
Research Fellow, Peter Grunberg Institute, FZ-Juelich, 2002-2003
Administrative positions at EPFL
Scientific staff member, EPFL Assembly, 2015-present
Scientific staff member, School Council SB, 2014-present
Member of the IPHYS office 2016-present
Member of the ICMP office 2012-2015
Member of the safety committee of ICMP 2010-2015
I studied at Ecole Polytechnique in Paris (X2003) and received my PhD in 2010 from ETH Zürich for a thesis in solid-state quantum optics with individual carbon nanotubes, in the Quantum Photonics Group of Prof. Ataç Imamoglu. As a postdoctoral researcher at Los Alamos National Lab (USA) I studied the photophysics of individual nanocrystal quantum dots in the groups of Victor Klimov and Han Htoon. I was investigating the mechanisms responsible for fluorescence fluctuations and how to control them. I then moved to the University of Delaware in the group of Michael Hochberg to work in the emerging field of integrated quantum optics. I was leading international projects such as the realisation of an on-chip source of quantum correlated photons integrating optical filters and demultiplexers. From 2013 to 2016, I was working at EPFL in the group of Prof. Kippenberg in the field of quantum optomechanics with an Ambizione Fellowship of the Swiss National Science Foundation (SNSF). My work focused on the creation of non-classical vibrational states of mesoscopic oscillators and on the amplification of vibrations in molecules. Since May 2017, I am leading the Laboratory of Quantum and Nano-Optics at EPFL as an SNSF-funded professor in the Institute of Physics. My team investigates two main phenomena: (i) the vibrational dynamics of molecules embedded in nanoscale plasmonic cavities, and (ii) non-classical correlations mediated by individual quanta of crystal vibrations at room-temperature. We employ state-of-the-art spectroscopic tools such as femtosecond lasers and single-photon counters to get new insights into sub-nanometer scale dynamics.
Olivier J.F. Martin received the M.Sc. and Ph.D. degrees in physics in 1989 and 1994, respectively, from the Swiss Federal Institute of Technology, Lausanne (EPFL), Switzerland. In 1989, he joined IBM Zurich Research Laboratory, where he investigated thermal and optical properties of semiconductor laser diodes. Between 1994 and 1997 he was a research staff member at the Swiss Federal Institute of Technology, Zurich (ETHZ). In 1997 he received a Lecturer fellowship from the Swiss National Science Foundation (SNSF). During the period 1996-1999, he spent a year and a half in the U.S.A., as invited scientist at the University of California in San Diego (UCSD). In 2001 he received a Professorship grant from the SNSF and became Professor of Nano-Optics at the ETHZ. In 2003, he was appointed Professor of Nanophotonics and Optical Signal Processing at the Swiss Federal Institute of Technology, Lausanne (EPFL), where he is currently head of the Nanophotonics and Metrology Laboratory and Director of the Microengineering Section.
Dr. Marcel Drabbels studied experimental physics at the University of Nijmegen (the Netherlands) and in 1993 obtained his Ph.D. at that same university. He then moved to the University of California at Santa Barbara where he studied the dynamics of highly vibrationally excited molecules and developed a new detection technique to investigate the photodissociation of molecules. When he returned to the Netherlands in 1996 he joined the FOM Institute for Atomic and Molecular Physics in Amsterdam where he worked on the development of new types of infrared imaging and streak cameras. In 1997 Dr. Drabbels was awarded a fellowship of the Royal Dutch Academy of Sciences and he moved to the Free University of Amsterdam where he studied the collision dynamics of molecules and initiated photodissociation experiments using ultrafast lasers. In October 1998 he was appointed as senior scientist at the EPFL where he studies the spectroscopy and dynamics of nanoscale systems. In March 2021 he was promoted to titular professor.