Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The alkali-silica reaction (ASR), also known as concrete cancer, is one of the most prevalent causes of concrete degradation. In this chemical reaction, amorphous silica in the aggregates reacts with alkalis in the pore solution. By absorbing water, hydrop ...
Concrete deterioration is a natural process, which has to be carefully monitored over a the service life of a structure. The Alkali-Silica Reaction (ASR) is a slow-process degradation, which devel-ops over decades and is therefore difficult to predict. Sin ...
Calcium silicate hydrate (C-S-H) is the main hydration product in Portland and blended cements, and greatly affects durability and mechanical properties of the hydrated cement. In the presence of Al-rich supplementary cementitious materials (SCMs), C-(A-)S ...
The calcium silicate hydrates (C-S-H) are without doubt one of the most important hydration products in a hardened cement paste. Giving the complexity of the microstructure that forms by hydration of ordinary Portland cement (OPC) and the more recently use ...
Alkali-silica reaction occurs in concrete between the alkalis contained in the pore solution and silica in the aggregates. Generation of ASR products gives rise to the internal pressures that cause expansion and cracking. Due to its deleterious effect on c ...
The reaction kinetics of the alkali silica reaction depends on the composition of the pore solution. The evolution of the pore solution composition in different cement pastes and concretes was studied. Pastes containing silica fume or metakaolin had the lo ...
Limestone calcined clays are a promising technology as they offer similar performance to OPC from 7 days onwards, while enabling a reduction of the clinker content of 50%. In some regions of the world like South America, pozzolanic cements (i.e., blended c ...
The need to produce more sustainable concrete is proving imminent given the rising environmental concerns facing the industry. Blended cement concrete, based on any of the prominent supplementary cementitious materials (SCMs) such as fly ash, ground granul ...
This paper studies the effect of temperature on the phase assemblages of belite-ye'elimite cement. A comparison is made between thermodynamic modelling and experimental data at 28 and 180 days of hydration at 5, 20, 40, and 60 degrees C. The fast reaction ...
The most promising solution towards cementitious materials with a lower carbon footprint is the partial substitution of the clinker by supplementary cementitious materials (SCMs) such as fly ash, blast furnace slag, limestone and calcined clays. The produc ...