In organometallic chemistry, acetylide refers to chemical compounds with the chemical formulas and , where M is a metal. The term is used loosely and can refer to substituted acetylides having the general structure (where R is an organic side chain). Acetylides are reagents in organic synthesis. The calcium acetylide commonly called calcium carbide is a major compound of commerce.
Alkali metal and alkaline earth metal acetylides of the general formula MC≡CM are salt-like Zintl phase compounds, containing C22− ions. Evidence for this ionic character can be seen in the ready hydrolysis of these compounds to form acetylene and metal oxides, there is also some evidence for the solubility of C22− ions in liquid ammonia. The C22− ion has a closed shell ground state of 1Σ, making it isoelectronic to a neutral molecule N2, which may afford it some stability.
Analogous acetylides prepared from other metals, particularly transition metals, show covalent character and are invariably associated with their metal centers. This can be seen in their general stability to water (such as silver acetylide, copper acetylide) and radically different chemical applications.
Acetylides of the general formula RC≡CM (where R = H or alkyl) generally show similar properties to their doubly substituted analogues. In the absence of additional ligands, metal acetylides adopt polymeric structures wherein the acetylide groups are bridging ligands.
Terminal alkynes are weak acids:
RC≡CH + R′′M R′′H + RC≡CM
To generate acetylides from acetylene and alkynes relies on the use of organometallic or inorganic superbases in solvents which are less acidic than the terminal alkyne. In early studies liquid ammonia was employed, but ethereal solvents are more common.
Lithium amide, LiHMDS, or organolithium reagents, such as butyllithium, are frequently used to form lithium acetylides:
{H-C{\equiv}C-H} + \overset{butyllithium}{BuLi} ->[\ce{THF}][-78^\circ\ce C] {Li-!{\equiv}!-H} + BuH
Sodium or potassium acetylides can be prepared from various inorganic reagents (such as sodium amide) or from their elemental metals, often at room temperature and atmospheric pressure.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Le cours se focalisera sur les composés carbonyles: leur structures, réactivités, et leurs transformations; la réactivité des énols/énolates et leurs réactions fondamentales. L'importance de la compré
In organic chemistry, alkynylation is an addition reaction in which a terminal alkyne () is added to a carbonyl group () to form an α-alkynyl alcohol (). When the acetylide is formed from acetylene (), the reaction gives an α-ethynyl alcohol. This process is often referred to as ethynylation. Such processes often involve metal acetylide intermediates. The principal reaction of interest involves the addition of the acetylene () to a ketone () or aldehyde (): RR'C=O + HC#CR'' -> RR'C(OH)C#CR'' The reaction proceeds with retention of the triple bond.
In organometallic chemistry, organolithium reagents are chemical compounds that contain carbon–lithium (C–Li) bonds. These reagents are important in organic synthesis, and are frequently used to transfer the organic group or the lithium atom to the substrates in synthetic steps, through nucleophilic addition or simple deprotonation. Organolithium reagents are used in industry as an initiator for anionic polymerization, which leads to the production of various elastomers.
Tollens' reagent (chemical formula Ag(NH3)2OH) is a chemical reagent used to distinguish between aldehydes and ketones along with some alpha-hydroxy ketones which can tautomerize into aldehydes. The reagent consists of a solution of silver nitrate, ammonium hydroxide and some sodium hydroxide (to maintain a basic pH of the reagent solution). It was named after its discoverer, the German chemist Bernhard Tollens. A positive test with Tollens' reagent is indicated by the precipitation of elemental silver, often producing a characteristic "silver mirror" on the inner surface of the reaction vessel.
Explores redox reactions of aldehydes, including Evans-Tishchenko, Cannizzaro, and Benzoin reactions, reduction of imines, and Wittig reaction variants.
Among the numerous existing chemical motifs, alkenes, alkynes, enol ethers and enamides, with an unsaturated carbon-carbon bond, are versatile functional groups that are found in many natural products and bioactive compounds. They are widely used as valuab ...
The alkyne motif is a versatile functional group often encountered in organic chemistry. It can be involved in various transformations such as the alkyne-azide cycloaddition and has found widespread application in medicinal chemistry, chemical biology and ...
Although alkynes are one of the smallest functional groups, they are among the most versatile building blocks for organic chemistry, with applications ranging from biochemistry to material sciences. Alkynylation reactions have traditionally relied on the u ...