In soil science, podzols are the typical soils of coniferous or boreal forests and also the typical soils of eucalypt forests and heathlands in southern Australia. In Western Europe, podzols develop on heathland, which is often a construct of human interference through grazing and burning. In some British moorlands with podzolic soils, cambisols are preserved under Bronze Age barrows.
Podzol means "under-ash" and is derived from the Russian под (pod) + зола́ (zola); the full form is подзо́листая по́чва (podzolistaya pochva), meaning "under-ashed soil". The term was first given in mid-1875 by Vasily Dokuchaev. It refers to the common experience of Russian peasants of plowing up an apparent under-layer of ash (leached or E horizon) during first plowing of a virgin soil of that type.
Podzols can occur on almost any parent material but generally derive from either quartz-rich sands and sandstone or sedimentary debris from magmatic rocks, provided there is high precipitation. Most Podzols are poor soils for agriculture due to the sandy portion, resulting in a low level of moisture and nutrients. Some are sandy and excessively drained. Others have shallow rooting zones and poor drainage due to subsoil cementation. A low pH further compounds issues, along with phosphate deficiencies and aluminum toxicity. The best agricultural use of Podzols is for grazing, although well-drained loamy types can be very productive for crops if lime and fertilizer are used.
The E horizon (or Ae in Canadian soil classification system), which is usually thick, is low in Fe and Al oxides and humus. It is formed under moist, cool and acidic conditions, especially where the parent material, such as granite or sandstone, is rich in quartz. It is found under a layer of organic material in the process of decomposition, which is usually thick. In the middle, there is often a thin horizon of . The bleached soil horizon, which always has a higher value than the horizons above and below it, goes over into a red or red-brown horizon (so-called Podzolic B).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Le cours est une introduction aux Sciences du sol. Il a pour but de présenter les principales caractéristiques, propriétés et fonctions des sols. Il fait appel à des notions théoriques mais également
Plant litter (also leaf litter, tree litter, soil litter, litterfall or duff) is dead plant material (such as leaves, bark, needles, twigs, and cladodes) that have fallen to the ground. This detritus or dead organic material and its constituent nutrients are added to the top layer of soil, commonly known as the litter layer or O horizon ("O" for "organic"). Litter is an important factor in ecosystem dynamics, as it is indicative of ecological productivity and may be useful in predicting regional nutrient cycling and soil fertility.
A soil horizon is a layer parallel to the soil surface whose physical, chemical and biological characteristics differ from the layers above and beneath. Horizons are defined in many cases by obvious physical features, mainly colour and texture. These may be described both in absolute terms (particle size distribution for texture, for instance) and in terms relative to the surrounding material, i.e. 'coarser' or 'sandier' than the horizons above and below. The identified horizons are indicated with symbols, which are mostly used in a hierarchical way.
Soil formation, also known as pedogenesis, is the process of soil genesis as regulated by the effects of place, environment, and history. Biogeochemical processes act to both create and destroy order (anisotropy) within soils. These alterations lead to the development of layers, termed soil horizons, distinguished by differences in color, structure, texture, and chemistry. These features occur in patterns of soil type distribution, forming in response to differences in soil forming factors.
Wetlands occupy the transitional zone between aquatic and terrestrial systems. Hydrological conditions have significant influence on wetland plant communities and soil biogeochemistry. However, our knowledge about plant-soil interactions in wetlands along ...
ELSEVIER2020
Red gypsum is the product of the neutralization of titanium dioxide (TiO2) extraction residue from ilmenite and anatase. The disposal of red gypsum creates heterogeneous plots with layers that may include Fe, Ca, Al, Mg, Mn, S, and other elements and an al ...
The dynamics of methane generation and evasion from well-oxygenated, oligotrophic streams have been traditionally neglected. We estimated evasion of methane and assessed its sources and production pathways using a stable isotope approach in 16 oxygen-rich ...