Related concepts (32)
Memory protection
Memory protection is a way to control memory access rights on a computer, and is a part of most modern instruction set architectures and operating systems. The main purpose of memory protection is to prevent a process from accessing memory that has not been allocated to it. This prevents a bug or malware within a process from affecting other processes, or the operating system itself. Protection may encompass all accesses to a specified area of memory, write accesses, or attempts to execute the contents of the area.
Mach (kernel)
Mach (mɑːk) is a kernel developed at Carnegie Mellon University by Richard Rashid and Avie Tevanian to support operating system research, primarily distributed and parallel computing. Mach is often considered one of the earliest examples of a microkernel. However, not all versions of Mach are microkernels. Mach's derivatives are the basis of the operating system kernel in GNU Hurd and of Apple's XNU kernel used in macOS, iOS, iPadOS, tvOS, and watchOS. The project at Carnegie Mellon ran from 1985 to 1994, ending with Mach 3.
Hardware virtualization
Hardware virtualization is the virtualization of computers as complete hardware platforms, certain logical abstractions of their componentry, or only the functionality required to run various operating systems. Virtualization hides the physical characteristics of a computing platform from the users, presenting instead an abstract computing platform. At its origins, the software that controlled virtualization was called a "control program", but the terms "hypervisor" or "virtual machine monitor" became preferred over time.
User space and kernel space
A modern computer operating system usually segregates virtual memory into user space and kernel space. Primarily, this separation serves to provide memory protection and hardware protection from malicious or errant software behaviour. Kernel space is strictly reserved for running a privileged operating system kernel, kernel extensions, and most device drivers. In contrast, user space is the memory area where application software and some drivers execute. The term user space (or userland) refers to all code that runs outside the operating system's kernel.
Full virtualization
In computer science, full virtualization (fv) employs techniques used to create instances of an environment, as opposed to simulation, which models the environment; or emulation, which replicates the target environment such as certain kinds of virtual machine environments. Full virtualization requires that every salient feature of the hardware be reflected into one of several virtual machines – including the full instruction set, input/output operations, interrupts, memory access, and whatever other elements are used by the software that runs on the bare machine, and that is intended to run in a virtual machine.
Microkernel
In computer science, a microkernel (often abbreviated as μ-kernel) is the near-minimum amount of software that can provide the mechanisms needed to implement an operating system (OS). These mechanisms include low-level address space management, thread management, and inter-process communication (IPC). If the hardware provides multiple rings or CPU modes, the microkernel may be the only software executing at the most privileged level, which is generally referred to as supervisor or kernel mode.
Sun xVM
Sun xVM was a product line from Sun Microsystems that addressed virtualization technology on x86 platforms. One component was discontinued before the Oracle acquisition of Sun; the remaining two continue under Oracle branding. Sun originally announced the xVM product family in October 2007. The brand at one time encompassed Sun xVM Server, Sun xVM Ops Center, and Sun xVM VirtualBox, but the latter two products abandoned the "xVM" branding in late 2009, and are now called Oracle Enterprise Manager Ops Center and Oracle VM VirtualBox.
Logical partition
A logical partition (LPAR) is a subset of a computer's hardware resources, virtualized as a separate computer. In effect, a physical machine can be partitioned into multiple logical partitions, each hosting a separate instance of an operating system. Formally, LPAR designates the mode of operation or an individual logical partition, whereas PR/SM is the commercial designation of the feature.
Bare machine
In computer science, bare machine (or bare metal) refers to a computer executing instructions directly on logic hardware without an intervening operating system. Modern operating systems evolved through various stages, from elementary to the present day complex, highly sensitive systems incorporating many services. After the development of programmable computers (which did not require physical changes to run different programs) but prior to the development of operating systems, sequential instructions were executed on the computer hardware directly using machine language without any system software layer.
IBM Z
IBM Z is a family name used by IBM for all of its z/Architecture mainframe computers. In July 2017, with another generation of products, the official family was changed to IBM Z from IBM z Systems; the IBM Z family now includes the newest model, the IBM z16, as well as the z15, the z14, and the z13 (released under the IBM z Systems/IBM System z names), the IBM zEnterprise models (in common use the zEC12 and z196), the IBM System z10 models (in common use the z10 EC), the IBM System z9 models (in common use the z9EC) and IBM eServer zSeries models (in common use refers only to the z900 and z990 generations of mainframe).

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.