Summary
Hardware virtualization is the virtualization of computers as complete hardware platforms, certain logical abstractions of their componentry, or only the functionality required to run various operating systems. Virtualization hides the physical characteristics of a computing platform from the users, presenting instead an abstract computing platform. At its origins, the software that controlled virtualization was called a "control program", but the terms "hypervisor" or "virtual machine monitor" became preferred over time. The term "virtualization" was coined in the 1960s to refer to a virtual machine (sometimes called "pseudo machine"), a term which itself dates from the experimental IBM M44/44X system. The creation and management of virtual machines has also been called "platform virtualization", or "server virtualization", more recently. Platform virtualization is performed on a given hardware platform by host software (a control program), which creates a simulated computer environment, a virtual machine (VM), for its guest software. The guest software is not limited to user applications; many hosts allow the execution of complete operating systems. The guest software executes as if it were running directly on the physical hardware, with several notable caveats. Access to physical system resources (such as the network access, display, keyboard, and disk storage) is generally managed at a more restrictive level than the host processor and system-memory. Guests are often restricted from accessing specific peripheral devices, or may be limited to a subset of the device's native capabilities, depending on the hardware access policy implemented by the virtualization host. Virtualization often exacts performance penalties, both in resources required to run the hypervisor, and as well as in reduced performance on the virtual machine compared to running native on the physical machine. In the case of server consolidation, many small physical servers can be replaced by one larger physical server to decrease the need for more (costly) hardware resources such as CPUs, and hard drives.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (2)
Related concepts (20)
Hardware virtualization
Hardware virtualization is the virtualization of computers as complete hardware platforms, certain logical abstractions of their componentry, or only the functionality required to run various operating systems. Virtualization hides the physical characteristics of a computing platform from the users, presenting instead an abstract computing platform. At its origins, the software that controlled virtualization was called a "control program", but the terms "hypervisor" or "virtual machine monitor" became preferred over time.
Virtual Iron
Virtual Iron Software, was located in Lowell, Massachusetts, sold proprietary software for virtualization and management of a virtual infrastructure. Co-founded by Alex Vasilevsky, Virtual Iron figured among the first companies to offer virtualization software to fully support Intel VT-x and AMD-V hardware-assisted virtualization. Oracle Corporation agreed to acquire Virtual Iron Software, Inc., subject to customary closing conditions. Oracle now declines to offer any updates or patches for current customers, even updates and patches developed before the purchase.
Kernel (operating system)
The kernel is a computer program at the core of a computer's operating system and generally has complete control over everything in the system. It is the portion of the operating system code that is always resident in memory and facilitates interactions between hardware and software components. A full kernel controls all hardware resources (e.g. I/O, memory, cryptography) via device drivers, arbitrates conflicts between processes concerning such resources, and optimizes the utilization of common resources e.
Show more
Related courses (7)
CS-728: Topics on Datacenter Design
Modern datacenters with thousands of servers and multi-megawatt power budgets form the backbone of our digital universe. ln this course, we will survey a broad and comprehensive spectrum of datacenter
CS-522: Principles of computer systems
This advanced graduate course teaches the key design principles underlying successful computer and communication systems, and shows how to solve real problems with ideas, techniques, and algorithms fr
CS-470: Advanced computer architecture
The course studies techniques to exploit Instruction-Level Parallelism (ILP) statically and dynamically. It also addresses some aspects of the design of domain-specific accelerators. Finally, it explo
Show more