In mathematics, the Legendre chi function is a special function whose Taylor series is also a Dirichlet series, given by
As such, it resembles the Dirichlet series for the polylogarithm, and, indeed, is trivially expressible in terms of the polylogarithm as
The Legendre chi function appears as the discrete Fourier transform, with respect to the order ν, of the Hurwitz zeta function, and also of the Euler polynomials, with the explicit relationships given in those articles.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, the Hurwitz zeta function is one of the many zeta functions. It is formally defined for complex variables s with Re(s) > 1 and a ≠ 0, −1, −2, ... by This series is absolutely convergent for the given values of s and a and can be extended to a meromorphic function defined for all s ≠ 1. The Riemann zeta function is ζ(s,1). The Hurwitz zeta function is named after Adolf Hurwitz, who introduced it in 1882. The Hurwitz zeta function has an integral representation for and (This integral can be viewed as a Mellin transform.