En mathématiques, la fonction chi de Legendre est définie par
La transformée de Fourier discrète de la fonction chi de Legendre relativement à l'ordre est la fonction zêta de Hurwitz.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
vignette|Fonction zêta de Hurwitz En mathématiques, la fonction zêta de Hurwitz est une des nombreuses fonctions zêta. Elle est définie, pour toute valeur q du paramètre, nombre complexe de partie réelle strictement positive, par la série suivante, convergeant vers une fonction holomorphe sur le demi-plan des complexes s tels que Re(s) > 1 : Par prolongement analytique, s'étend en une fonction méromorphe sur le plan complexe, d'unique pôle s = 1. est la fonction zêta de Riemann. où Γ désigne la fonction Gamma.