In geometry, an orthant or hyperoctant is the analogue in n-dimensional Euclidean space of a quadrant in the plane or an octant in three dimensions. In general an orthant in n-dimensions can be considered the intersection of n mutually orthogonal half-spaces. By independent selections of half-space signs, there are 2n orthants in n-dimensional space. More specifically, a closed orthant in Rn is a subset defined by constraining each Cartesian coordinate to be nonnegative or nonpositive. Such a subset is defined by a system of inequalities: ε1x1 ≥ 0 ε2x2 ≥ 0 · · · εnxn ≥ 0, where each εi is +1 or −1. Similarly, an open orthant in Rn is a subset defined by a system of strict inequalities ε1x1 > 0 ε2x2 > 0 · · · εnxn > 0, where each εi is +1 or −1. By dimension: In one dimension, an orthant is a ray. In two dimensions, an orthant is a quadrant. In three dimensions, an orthant is an octant. John Conway defined the term n-orthoplex from orthant complex as a regular polytope in n-dimensions with 2n simplex facets, one per orthant. The nonnegative orthant is the generalization of the first quadrant to n-dimensions and is important in many constrained optimization problems.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.