A nicotinic agonist is a drug that mimics the action of acetylcholine (ACh) at nicotinic acetylcholine receptors (nAChRs). The nAChR is named for its affinity for nicotine.
Examples include nicotine (by definition), acetylcholine (the endogenous agonist of nAChRs), choline, epibatidine, lobeline, varenicline and cytisine.
Nicotine has been known for centuries for its intoxicating effect. It was first isolated in 1828 from the tobacco plant by German chemists Posselt and Reimann.
The discovery of positive effects from nicotine on animal memory was discovered by in vivo researches in the mid 1980s. Those researches led to a new era in studies of nicotinic acetylcholine receptor (nAChR) and their stimulation but until then the focus had mainly been on nicotine addiction. The development of nAChR agonists began in the early 1990s after the discovery of nicotine's positive effects. Some research showed a possible therapy option in preclinical researches. ABT-418 was one of the first in a series of nAChR agonists and it was designed by Abbott Labs. ABT-418 showed significant increase of delayed matching-to-sample (DMTS) performance in matured macaque apes of different species and sex. ABT-418 has also been examined as a possible treatment to Alzheimer's disease, Parkinson's disease and attention-deficit hyperactivity disorder: those experiments showed positive outcomes.
One of the first nAChR active compounds, besides nicotine, that was marketed as a drug was galantamine, a plant alkaloid that works as a weak cholinesterase inhibitor (IC50=5μM) as well as an allosteric sensitizer for nAChRs (EC50=50 nM).
In the human nervous system nicotinic cholinergic signals are extended throughout the system, where the neurotransmitter acetylcholine (ACh) plays a key role in activating ligand-gated ion channels. The cholinergic system is a vital nervous pathway, where cholinergic neurons synthesize, store and release the neurotransmitter ACh. The main receptors that convert the ACh messages are the cholinergic muscarinic acetylcholine receptors, neuronal and muscular nAChRs.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (7)
A nicotinic agonist is a drug that mimics the action of acetylcholine (ACh) at nicotinic acetylcholine receptors (nAChRs). The nAChR is named for its affinity for nicotine. Examples include nicotine (by definition), acetylcholine (the endogenous agonist of nAChRs), choline, epibatidine, lobeline, varenicline and cytisine. Nicotine has been known for centuries for its intoxicating effect. It was first isolated in 1828 from the tobacco plant by German chemists Posselt and Reimann.
Carbachol, also known as carbamylcholine and sold under the brand name Miostat among others, is a cholinomimetic drug that binds and activates acetylcholine receptors. Thus it is classified as a cholinergic agonist. It is primarily used for various ophthalmic purposes, such as for treating glaucoma, or for use during ophthalmic surgery. It is generally administered as an ophthalmic solution (i.e., eye drops).
Muscarinic acetylcholine receptors, or mAChRs, are acetylcholine receptors that form G protein-coupled receptor complexes in the cell membranes of certain neurons and other cells. They play several roles, including acting as the main end-receptor stimulated by acetylcholine released from postganglionic fibers in the parasympathetic nervous system. Muscarinic receptors are so named because they are more sensitive to muscarine than to nicotine.
Presentation of selected signalling pathways with emphasis on both the mechanism of action of the molecules involved, molecular interactions and the role of their spatio-temporal organization within t
Ce cours permet aux étudiants ayant suivi Morphologie I de réviser et d'approfondir leurs connaissances par l'étude de l'anatomie radiologique et du développement. L'origine de malformations fréquente
This course introduces the student to the fudamentals of pharmacology, pharmacokinetics and drug-receptor interactions. It discusses also pharmacogenetics and chronopharmacology, to exemplify the chal