In signal processing, linear phase is a property of a filter where the phase response of the filter is a linear function of frequency. The result is that all frequency components of the input signal are shifted in time (usually delayed) by the same constant amount (the slope of the linear function), which is referred to as the group delay. Consequently, there is no phase distortion due to the time delay of frequencies relative to one another.
For discrete-time signals, perfect linear phase is easily achieved with a finite impulse response (FIR) filter by having coefficients which are symmetric or anti-symmetric. Approximations can be achieved with infinite impulse response (IIR) designs, which are more computationally efficient. Several techniques are:
a Bessel transfer function which has a maximally flat group delay approximation function
a phase equalizer
A filter is called a linear phase filter if the phase component of the frequency response is a linear function of frequency. For a continuous-time application, the frequency response of the filter is the Fourier transform of the filter's impulse response, and a linear phase version has the form:
where:
A(ω) is a real-valued function.
is the group delay.
For a discrete-time application, the discrete-time Fourier transform of the linear phase impulse response has the form:
where:
A(ω) is a real-valued function with 2π periodicity.
k is an integer, and k/2 is the group delay in units of samples.
is a Fourier series that can also be expressed in terms of the Z-transform of the filter impulse response. I.e.:
where the notation distinguishes the Z-transform from the Fourier transform.
When a sinusoid passes through a filter with constant (frequency-independent) group delay the result is:
where:
is a frequency-dependent amplitude multiplier.
The phase shift is a linear function of angular frequency , and is the slope.
It follows that a complex exponential function:
is transformed into:
For approximately linear phase, it is sufficient to have that property only in the passband(s) of the filter, where |A(ω)| has relatively large values.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Découvrir le monde de l'électronique depuis les lois fondamentales des composants discrets linéaires et non linéaires. Les circuits obtenus avec des assemblages de composants nécessitent de nombreuses
Présentation des concepts et des outils de base pour la caractérisation des signaux ainsi que pour l'analyse et la synthèse des systèmes linéaires (filtres ou canaux de transmission). Application de c
In signal processing, a filter is a device or process that removes some unwanted components or features from a signal. Filtering is a class of signal processing, the defining feature of filters being the complete or partial suppression of some aspect of the signal. Most often, this means removing some frequencies or frequency bands. However, filters do not exclusively act in the frequency domain; especially in the field of many other targets for filtering exist.
Infinite impulse response (IIR) is a property applying to many linear time-invariant systems that are distinguished by having an impulse response which does not become exactly zero past a certain point, but continues indefinitely. This is in contrast to a finite impulse response (FIR) system in which the impulse response does become exactly zero at times for some finite , thus being of finite duration. Common examples of linear time-invariant systems are most electronic and digital filters.
In electronics and signal processing, a Bessel filter is a type of analog linear filter with a maximally flat group delay (i.e., maximally linear phase response), which preserves the wave shape of filtered signals in the passband. Bessel filters are often used in audio crossover systems. The filter's name is a reference to German mathematician Friedrich Bessel (1784–1846), who developed the mathematical theory on which the filter is based. The filters are also called Bessel–Thomson filters in recognition of W.
In the past few years, analog computing has experienced rapid development but mostly for a single function. Motivated by parallel space-time computing and miniaturization, we show that reconfigurable graphene-based multilayerss offer a promising path towar ...
2021
, ,
We consider nonlinear dynamical systems driven by stochastic forcing. It has been largely evidenced in the literature that the linear response of non-normal systems (e.g. fluid flows) may exhibit a large variance amplification, even in a linearly stable re ...
2022
, ,
The self-consistent evaluation of Hubbard parameters using linear-response theory is crucial for quantitatively predictive calculations based on Hubbard-corrected density-functional theory. Here, we extend a recently introduced approach based on density-fu ...