Publication

A Vibrational Technique for in vitro Intraoperative Prosthesis Fixation Monitoring

Abstract

Objective: In this paper, a new vibrational modal analysis technique was developed for intraoperative cementless prosthesis fixation evaluation upon hammering. Methods: An artificial bone (Sawbones)-prosthesis system was excited by sweeping of a sine signal over a wide frequency range. The exponential sine sweep technique was implemented to the response signal in order to determine the linear impulse response. Recursive Fourier transform enhancement (RFTE) technique was applied to the linear impulse response signal in order to enhance the frequency spectrum with sharp and distinguishable peak values indicating distinct high natural frequencies of the system (ranging from 15 kHz to 90 kHz). The experiment was repeated with 5 Sawbones-prosthesis samples. Upon successive hammering during the prosthesis insertion, variation of each natural frequency was traced. Results: Compared to classical Fast Fourier Transform, RFTE provided a better tracing and enhancement of frequency components during insertion. Three different types of frequency evolving trends (monotonically increasing, insensitive, and plateau-like) were observed for all samples, as confirmed by a new finite element simulation of the prosthesis dynamic insertion. Two main mechanical phenomena (i.e., geometrical compaction and compressive stress) were shown to govern these trends in opposite ways. Follow-up of the plateau-like trend upon hammering showed that the frequency shift is a good indicator of fixation. Conclusion: Alongside the individual follow-up of frequency shifts, combinatorial frequency analysis provides new objective information on the mechanical stability of Sawbone-prosthesis fixation. Significance: The proposed vibrational technique based on RTFE can provide the surgeon with a new assistive diagnostic technique during the surgery by indicating when the bone-prosthesis fixation is acceptable, and beyond of which further hammering should be done cautiously to avoid bone fracture.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (33)
Frequency response
In signal processing and electronics, the frequency response of a system is the quantitative measure of the magnitude and phase of the output as a function of input frequency. The frequency response is widely used in the design and analysis of systems, such as audio and control systems, where they simplify mathematical analysis by converting governing differential equations into algebraic equations.
Impulse response
In signal processing and control theory, the impulse response, or impulse response function (IRF), of a dynamic system is its output when presented with a brief input signal, called an impulse (δ(t)). More generally, an impulse response is the reaction of any dynamic system in response to some external change. In both cases, the impulse response describes the reaction of the system as a function of time (or possibly as a function of some other independent variable that parameterizes the dynamic behavior of the system).
Frequency domain
In mathematics, physics, electronics, control systems engineering, and statistics, the frequency domain refers to the analysis of mathematical functions or signals with respect to frequency, rather than time. Put simply, a time-domain graph shows how a signal changes over time, whereas a frequency-domain graph shows how the signal is distributed within different frequency bands over a range of frequencies. A frequency-domain representation consists of both the magnitude and the phase of a set of sinusoids (or other basis waveforms) at the frequency components of the signal.
Show more
Related publications (71)

Robust Data-Driven Controller Design with Finite Frequency Samples

Alireza Karimi, Philippe Louis Schuchert

Modern control synthesis methods rely on accurate models to derive a performant controller. Obtaining a good model is often a costly step, and has led to a renewed interest in data-driven synthesis methods. Frequency-response-based synthesis methods have b ...
2024

Multi-Frequency Tracking via Group-Sparse Optimal Transport

Isabel Haasler

In this letter, we introduce an optimal transport framework for inferring power distributions over both spatial location and temporal frequency. Recently, it has been shown that optimal transport is a powerful tool for estimating spatial spectra that chang ...
Ieee-Inst Electrical Electronics Engineers Inc2024

Tri-Axial Magnetic Field Sensor up to VHF with Frequency Weighing

German Augusto Ramirez Arroyave

This contribution presents an isotropic magnetic field probe with shaped frequency response in the band 100 kHz - 400 MHz to ponder the aggregate response according to the ICNIRP 2020 guidelines. The basic sensor is a printed loop which is modelled as a Th ...
IEEE2023
Show more
Related MOOCs (14)
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Digital Signal Processing II
Adaptive signal processing, A/D and D/A. This module provides the basic tools for adaptive filtering and a solid mathematical framework for sampling and quantization
Digital Signal Processing III
Advanced topics: this module covers real-time audio processing (with examples on a hardware board), image processing and communication system design.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.