Concept

George Pólya

Summary
George Pólya (ˈpoʊljə; Pólya György, ˈpoːjɒ ˈɟørɟ; December 13, 1887 – September 7, 1985) was a Hungarian mathematician. He was a professor of mathematics from 1914 to 1940 at ETH Zürich and from 1940 to 1953 at Stanford University. He made fundamental contributions to combinatorics, number theory, numerical analysis and probability theory. He is also noted for his work in heuristics and mathematics education. He has been described as one of The Martians, an informal category which included one of his most famous students at ETH Zurich, John Von Neumann. Pólya was born in Budapest, Austria-Hungary, to Anna Deutsch and Jakab Pólya, Hungarian Jews who had converted to Christianity in 1886. Although his parents were religious and he was baptized into the Catholic Church upon birth, George eventually grew up to be an agnostic. He received a PhD under Lipót Fejér in 1912, at Eötvös Loránd University. He was a professor of mathematics from 1914 to 1940 at ETH Zürich in Switzerland and from 1940 to 1953 at Stanford University. He remained a Professor Emeritus at Stanford for the rest of his career, working on a range of mathematical topics, including series, number theory, mathematical analysis, geometry, algebra, combinatorics, and probability. He was invited to speak at the ICM at Bologna in 1928, at Oslo in 1936 and at Cambridge, Massachusetts, in 1950. On September 7, 1985, Pólya died in Palo Alto, California, United States. He passed due to complications of a stroke he suffered in the past summer. Early in his career, Pólya wrote with Gábor Szegő two influential problem books, Problems and Theorems in Analysis (I: Series, Integral Calculus, Theory of Functions and II: Theory of Functions. Zeros. Polynomials. Determinants. Number Theory. Geometry). Later in his career, he spent considerable effort to identify systematic methods of problem-solving to further discovery and invention in mathematics for students, teachers, and researchers.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.