The Dirac large numbers hypothesis (LNH) is an observation made by Paul Dirac in 1937 relating ratios of size scales in the Universe to that of force scales. The ratios constitute very large, dimensionless numbers: some 40 orders of magnitude in the present cosmological epoch. According to Dirac's hypothesis, the apparent similarity of these ratios might not be a mere coincidence but instead could imply a cosmology with these unusual features:
The strength of gravity, as represented by the gravitational constant, is inversely proportional to the age of the universe:
The mass of the universe is proportional to the square of the universe's age: .
Physical constants are actually not constant. Their values depend on the age of the Universe.
LNH was Dirac's personal response to a set of large number "coincidences" that had intrigued other theorists of his time. The "coincidences" began with Hermann Weyl (1919), who speculated that the observed radius of the universe, RU, might also be the hypothetical radius of a particle whose rest energy is equal to the gravitational self-energy of the electron:
where,
with
and re is the classical electron radius, me is the mass of the electron, mH denotes the mass of the hypothetical particle, and rH is its electrostatic radius.
The coincidence was further developed by Arthur Eddington (1931) who related the above ratios to N, the estimated number of charged particles in the universe:
In addition to the examples of Weyl and Eddington, Dirac was also influenced by the primeval-atom hypothesis of Georges Lemaître, who lectured on the topic in Cambridge in 1933. The notion of a varying-G cosmology first appears in the work of Edward Arthur Milne a few years before Dirac formulated LNH. Milne was inspired not by large number coincidences but by a dislike of Einstein's general theory of relativity. For Milne, space was not a structured object but simply a system of reference in which relations such as this could accommodate Einstein's conclusions:
where MU is the mass of the universe and t is the age of the universe.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In particle physics and physical cosmology, Planck units are a set of units of measurement defined exclusively in terms of four universal physical constants, in such a manner that these physical constants take on the numerical value of 1 when expressed in terms of these units. Originally proposed in 1899 by German physicist Max Planck, these units are a system of natural units because their definition is based on properties of nature, more specifically the properties of free space, rather than a choice of prototype object.
The anthropic principle, also known as the "observation selection effect", is the hypothesis, first proposed in 1957 by Robert Dicke, that the range of possible observations that could be made about the universe is limited by the fact that observations could only happen in a universe capable of developing intelligent life in the first place. Proponents of the anthropic principle argue that it explains why this universe has the age and the fundamental physical constants necessary to accommodate conscious life, since if either had been different, no one would have been around to make observations.
Explores the evolution of surveys into modern time-domain astronomy, highlighting the impact of time-domain observations on recent Nobel prizes.
, , , ,
Numerical simulations have become one of the key tools used by theorists in all the fields of astrophysics and cosmology. The development of modern tools that target the largest existing computing systems and exploit state-of-the-art numerical methods and ...
Galaxy intrinsic alignment (IA) is a source of both systematic contamination of cosmic shear measurement and its cosmological applications and valuable information on the large-scale structure of the universe and galaxy formation. The self-calibration (SC) ...
Analyzing gravitationally lensed objects enables a wide range of physical and cosmological applications, such as probing the dark matter content in galaxies and clusters or measuring the Universe's expansion rate.The precision of these applications can be ...