The Ogallala Aquifer () is a shallow water table aquifer surrounded by sand, silt, clay, and gravel located beneath the Great Plains in the United States. As one of the world's largest aquifers, it underlies an area of approximately in portions of eight states (South Dakota, Nebraska, Wyoming, Colorado, Kansas, Oklahoma, New Mexico, and Texas). It was named in 1898 by geologist N. H. Darton from its type locality near the town of Ogallala, Nebraska. The aquifer is part of the High Plains Aquifer System, and resides in the Ogallala Formation, which is the principal geologic unit underlying 80% of the High Plains. Large-scale extraction for agricultural purposes started after World War II due partially to center pivot irrigation and to the adaptation of automotive engines to power groundwater wells. Today about 27% of the irrigated land in the entire United States lies over the aquifer, which yields about 30% of the ground water used for irrigation in the United States. The aquifer is at risk of over-extraction and pollution. Since 1950, agricultural irrigation has reduced the saturated volume of the aquifer by an estimated 9%. Once depleted, the aquifer will take over 6,000 years to replenish naturally through rainfall. The aquifer system supplies drinking water to 82% of the 2.3 million people (1990 census) who live within the boundaries of the High Plains study area. The deposition of aquifer material dates back two to six million years, from the late Miocene to early Pliocene ages when the southern Rocky Mountains were still tectonically active. From the uplands to the west, rivers and streams cut channels in a generally west to east or southeast direction. Erosion of the Rockies provided alluvial and aeolian sediment that filled the ancient channels and eventually covered the entire area of the present-day aquifer, forming the water-bearing Ogallala Formation. In that respect, the process is similar to those currently prevailing in other modern rivers of the area, such as the Kansas River and its tributaries.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (3)
ENV-221: Hydrology for engineers
This is an introductory course to key concepts and methods in physical and engineering hydrology.
ENV-167: Introduction to environmental engineering
Key themes in environmental science and engineering will be show-cased, with examples - from equator to the poles - including atmospheric processes and climate change, water quality, energy resources
ENV-200: Environmental chemistry
This course provides students with an overview over the basics of environmental chemistry. This includes the chemistry of natural systems, as well as the fate of anthropogenic chemicals in natural sys
Related lectures (32)
Groundwater: Modeling and Analysis
Explores mathematical modeling and analysis of groundwater systems, including aquifer properties, drawdown curves, and transient well hydraulics.
Drinking Water Collection and Treatment
Explores drinking water collection, treatment, legal bases, groundwater quality, and protection zones in Switzerland.
Water Resources and Groundwater Hydrology
Explores water properties, aquifers, Darcy's law, and groundwater flow patterns.
Show more
Related publications (84)

Design of a Flexure-Based Flywheel for the Storage of Angular Momentum and Kinetic Energy

Simon Nessim Henein, Florent Cosandier, Hubert Pierre-Marie Benoît Schneegans, Patrick Robert Flückiger

The flywheel is a widespread mechanical component used for the storage of kinetic energy and angular momentum. It typically consists of cylindrical inertia rotating about its axis on rolling bearings, which involves undesired friction, lubrication, and wea ...
2024

Applying the Principal Component Analysis for a deeper understanding of the groundwater system: case study of the Bacchiglione Basin (Veneto, Italy)

Andrea Rinaldo

In hydrogeology, it is often difficult to fully understand the hydraulic factors affecting the recharge of groundwater systems. Particularly, at a regional scale, the groundwater system can have different drivers depending on the considered area, i.e., soi ...
PAGEPRESS PUBL2022

Impacts of climate change on Swiss alluvial aquifers - A quantitative forecast focused on natural and artificial groundwater recharge by surface water infiltration

Sebastiano Piccolroaz

The sensitivity of future groundwater recharge and temperature development was investigated for three alluvial aquifers in the urban agglomeration of the city of Basel, Switzerland. For selected climate projections groundwater recharge and the associated t ...
ELSEVIER2022
Show more
Related concepts (16)
Hydrogeology
Hydrogeology (hydro- meaning water, and -geology meaning the study of the Earth) is the area of geology that deals with the distribution and movement of groundwater in the soil and rocks of the Earth's crust (commonly in aquifers). The terms groundwater hydrology, geohydrology, and hydrogeology are often used interchangeably. Hydrogeology is the study of the laws governing the movement of subterranean water, the mechanical, chemical, and thermal interaction of this water with the porous solid, and the transport of energy, chemical constituents, and particulate matter by flow (Domenico and Schwartz, 1998).
Center-pivot irrigation
Center-pivot irrigation (sometimes called central pivot irrigation), also called water-wheel and circle irrigation, is a method of crop irrigation in which equipment rotates around a pivot and crops are watered with sprinklers. A circular area centered on the pivot is irrigated, often creating a circular pattern in crops when viewed from above (sometimes referred to as crop circles, not to be confused with those formed by circular flattening of a section of a crop in a field).
Groundwater
Groundwater is the water present beneath Earth's surface in rock and soil pore spaces and in the fractures of rock formations. About 30 percent of all readily available freshwater in the world is groundwater. A unit of rock or an unconsolidated deposit is called an aquifer when it can yield a usable quantity of water. The depth at which soil pore spaces or fractures and voids in rock become completely saturated with water is called the water table.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.