Satellite geodesy is geodesy by means of artificial satellites—the measurement of the form and dimensions of Earth, the location of objects on its surface and the figure of the Earth's gravity field by means of artificial satellite techniques. It belongs to the broader field of space geodesy. Traditional astronomical geodesy is not commonly considered a part of satellite geodesy, although there is considerable overlap between the techniques.
The main goals of satellite geodesy are:
Determination of the figure of the Earth, positioning, and navigation (geometric satellite geodesy)
Determination of geoid, Earth's gravity field and its temporal variations (dynamical satellite geodesy or satellite physical geodesy)
Measurement of geodynamical phenomena, such as crustal dynamics and polar motion
Satellite geodetic data and methods can be applied to diverse fields such as navigation, hydrography, oceanography and geophysics. Satellite geodesy relies heavily on orbital mechanics.
Satellite geodesy began shortly after the launch of Sputnik in 1957. Observations of Explorer 1 and Sputnik 2 in 1958 allowed for an accurate determination of Earth's flattening. The 1960s saw the launch of the Doppler satellite Transit-1B and the balloon satellites Echo 1, Echo 2, and PAGEOS. The first dedicated geodetic satellite was ANNA-1B, a collaborative effort between NASA, the DoD, and other civilian agencies. ANNA-1B carried the first of the US Army's SECOR (Sequential Collation of Range) instruments. These missions led to the accurate determination of the leading spherical harmonic coefficients of the geopotential, the general shape of the geoid, and linked the world's geodetic datums.
Soviet military satellites undertook geodesic missions to assist in ICBM targeting in the late 1960s and early 1970s.
The Transit satellite system was used extensively for Doppler surveying, navigation, and positioning. Observations of satellites in the 1970s by worldwide triangulation networks allowed for the establishment of the World Geodetic System.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Determination of spatial orientation (i.e. position, velocity, attitude) via integration of inertial sensors with satellite positioning. Prerequisite for many applications related to remote sensing, e
All fundamental principles behind modern satellite positioning to acquire, track and evaluate direct and indirect satellite signals and process them in relation to example applications: Earth monito
Bases de la géomatique pour les ingénieur·e·s civil et en environnement. Présentation des méthodes d'acquisition, de gestion et de représentation des géodonnées. Apprentissage pratique avec des méthod
Ce cours de base en géomatique présente les concepts et méthodes d’acquisition, de gestion et de représentation des géodonnées. Il inclut les bases de topométrie, géodésie et cartographie, avec un acc
The New Space Economy is a fast-growing market, driven by the commercialization of the historical institutional space sector. This course contains more than 30 videos-lectures from space experts from
The New Space Economy is a fast-growing market, driven by the commercialization of the historical institutional space sector. This course contains more than 30 videos-lectures from space experts from
An Earth ellipsoid or Earth spheroid is a mathematical figure approximating the Earth's form, used as a reference frame for computations in geodesy, astronomy, and the geosciences. Various different ellipsoids have been used as approximations. It is a spheroid (an ellipsoid of revolution) whose minor axis (shorter diameter), which connects the geographical North Pole and South Pole, is approximately aligned with the Earth's axis of rotation.
In satellite laser ranging (SLR) a global network of observation stations measures the round trip time of flight of ultrashort pulses of light to satellites equipped with retroreflectors. This provides instantaneous range measurements of millimeter level precision which can be accumulated to provide accurate measurement of orbits and a host of important scientific data. The laser pulse can also be reflected by the surface of a satellite without a retroreflector, which is used for tracking space debris.
Jason-1 was a satellite altimeter oceanography mission. It sought to monitor global ocean circulation, study the ties between the ocean and the atmosphere, improve global climate forecasts and predictions, and monitor events such as El Niño and ocean eddies. Jason-1 was launched in 2001 and it was followed by OSTM/Jason-2 in 2008, and Jason-3 in 2016 - the Jason satellite series. Jason-1 was launched alongside the TIMED spacecraft.
Drones hold promise to assist in civilian tasks. To realize this application, future drones must operate within large cities, covering large distances while navigating within cluttered urban landscapes. The increased efficiency of winged drones over rotary ...
EPFL2024
X-Ray observation of Venus using JEMX instrument on INTEGRAL telescope in the 18.04.22 to 24.04.22 window. Abstract: On April 22 and 24, 2022, Venus was observed with the JEM-X detector of the INTEGRAL space telescope. The observation performed yielded a d ...
Navigation of drones is predominantly based on sensor fusion algorithms. Most of these algorithms make use of some form of Bayesian filtering with a majority employing an Extended Kalman Filter (EKF), wherein inertial measurements are fused with a Global N ...