In hyperbolic geometry, angle of parallelism , is the angle at the non-right angle vertex of a right hyperbolic triangle having two asymptotic parallel sides. The angle depends on the segment length a between the right angle and the vertex of the angle of parallelism.
Given a point not on a line, drop a perpendicular to the line from the point. Let a be the length of this perpendicular segment, and be the least angle such that the line drawn through the point does not intersect the given line. Since two sides are asymptotically parallel,
There are five equivalent expressions that relate and a:
where sinh, cosh, tanh, sech and csch are hyperbolic functions and gd is the Gudermannian function.
János Bolyai discovered a construction which gives the asymptotic parallel s to a line r passing through a point A not on r. Drop a perpendicular from A onto B on r. Choose any point C on r different from B. Erect a perpendicular t to r at C. Drop a perpendicular from A onto D on t. Then length DA is longer than CB, but shorter than CA. Draw a circle around C with radius equal to DA. It will intersect the segment AB at a point E. Then the angle BEC is independent of the length BC, depending only on AB; it is the angle of parallelism. Construct s through A at angle BEC from AB.
See Trigonometry of right triangles for the formulas used here.
The angle of parallelism was developed in 1840 in the German publication "Geometrische Untersuchungen zur Theory der Parallellinien" by Nikolai Lobachevsky.
This publication became widely known in English after the Texas professor G. B. Halsted produced a translation in 1891. (Geometrical Researches on the Theory of Parallels)
The following passages define this pivotal concept in hyperbolic geometry:
The angle HAD between the parallel HA and the perpendicular AD is called the parallel angle (angle of parallelism) which we will here designate by Π(p) for AD = p.
In the Poincaré half-plane model of the hyperbolic plane (see Hyperbolic motions), one can establish the relation of Φ to a with Euclidean geometry.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, the Gudermannian function relates a hyperbolic angle measure to a circular angle measure called the gudermannian of and denoted . The Gudermannian function reveals a close relationship between the circular functions and hyperbolic functions. It was introduced in the 1760s by Johann Heinrich Lambert, and later named for Christoph Gudermann who also described the relationship between circular and hyperbolic functions in 1830.
In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points (cos t, sin t) form a circle with a unit radius, the points (cosh t, sinh t) form the right half of the unit hyperbola. Also, similarly to how the derivatives of sin(t) and cos(t) are cos(t) and –sin(t) respectively, the derivatives of sinh(t) and cosh(t) are cosh(t) and +sinh(t) respectively. Hyperbolic functions occur in the calculations of angles and distances in hyperbolic geometry.
In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai–Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with: For any given line R and point P not on R, in the plane containing both line R and point P there are at least two distinct lines through P that do not intersect R. (Compare the above with Playfair's axiom, the modern version of Euclid's parallel postulate.) The hyperbolic plane is a plane where every point is a saddle point.