Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Mode choice analysis is the third step in the conventional four-step transportation forecasting model of transportation planning, following trip distribution and preceding route assignment. From origin-destination table inputs provided by trip distribution, mode choice analysis allows the modeler to determine probabilities that travelers will use a certain mode of transport. These probabilities are called the modal share, and can be used to produce an estimate of the amount of trips taken using each feasible mode. The early transportation planning model developed by the Chicago Area Transportation Study (CATS) focused on transit. It wanted to know how much travel would continue by transit. The CATS divided transit trips into two classes: trips to the Central Business District, or CBD (mainly by subway/elevated transit, express buses, and commuter trains) and other (mainly on the local bus system). For the latter, increases in auto ownership and use were a trade-off against bus use; trend data were used. CBD travel was analyzed using historic mode choice data together with projections of CBD land uses. Somewhat similar techniques were used in many studies. Two decades after CATS, for example, the London study followed essentially the same procedure, but in this case, researchers first divided trips into those made in the inner part of the city and those in the outer part. This procedure was followed because it was thought that income (resulting in the purchase and use of automobiles) drove mode choice. The CATS had diversion curve techniques available and used them for some tasks. At first, the CATS studied the diversion of auto traffic from streets and arterial roads to proposed expressways. Diversion curves were also used for bypasses built around cities to find out what percent of traffic would use the bypass. The mode choice version of diversion curve analysis proceeds this way: one forms a ratio, say: where: cm = travel time by mode m and R is empirical data in the form: Given the R that we have calculated, the graph tells us the percent of users in the market that will choose transit.
Michel Bierlaire, Prateek Bansal
,