Concept

Hausdorff maximal principle

Summary
In mathematics, the Hausdorff maximal principle is an alternate and earlier formulation of Zorn's lemma proved by Felix Hausdorff in 1914 (Moore 1982:168). It states that in any partially ordered set, every totally ordered subset is contained in a maximal totally ordered subset. The Hausdorff maximal principle is one of many statements equivalent to the axiom of choice over ZF (Zermelo–Fraenkel set theory without the axiom of choice). The principle is also called the Hausdorff maximality theorem or the Kuratowski lemma (Kelley 1955:33). Statement The Hausdorff maximal principle states that, in any partially ordered set, every totally ordered subset is contained in a maximal totally ordered subset (a totally ordered subset that, if enlarged in any way, does not remain totally ordered). In general, there may be many maximal totally ordered subsets containing a given totally ordered subset. An equivalent form of the Hausdorff maximal principle is that in every partially ord
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications

No results

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading