Degrees Brix (symbol °Bx) is a measure of the dissolved solids in a liquid, and is commonly used to measure dissolved sugar content of an aqueous solution. One degree Brix is 1 gram of sucrose in 100 grams of solution and represents the strength of the solution as percentage by mass. If the solution contains dissolved solids other than pure sucrose, then the °Bx only approximates the dissolved solid content. For example, when one adds equal amounts of salt and sugar to equal amounts of water, the degrees of refraction (BRIX) of the salt solution rises faster than the sugar solution. The °Bx is traditionally used in the wine, sugar, carbonated beverage, fruit juice, fresh produce, maple syrup and honey industries. The °Bx is also used for measuring the concentration of a cutting fluid mixed in water for metalworking processes.
Comparable scales for indicating sucrose content are: the Plato scale (°P), which is widely used by the brewing industry; the Oechsle scale used in German and Swiss wine making industries, amongst others; and the Balling scale, which is the oldest of the three systems and therefore mostly found in older textbooks, but is still in use in some parts of the world.
A sucrose solution with an apparent specific gravity (20°/20 °C) of 1.040 would be 9.99325 °Bx or 9.99359 °P while the representative sugar body, the International Commission for Uniform Methods of Sugar Analysis (ICUMSA), which favours the use of mass fraction, would report the solution strength as 9.99249%. Because the differences between the systems are of little practical significance (the differences are less than the precision of most common instruments) and wide historical use of the Brix unit, modern instruments calculate mass fraction using ICUMSA official formulas but report the result as °Bx.
In the early 1800s, Karl Balling, followed by Adolf Brix, and finally the Normal-Commissions under Fritz Plato, prepared pure sucrose solutions of known strength, measured their specific gravities and prepared tables of percent sucrose by mass vs.