The Frank Nelson Cole Prize, or Cole Prize for short, is one of twenty-two prizes awarded to mathematicians by the American Mathematical Society, one for an outstanding contribution to algebra, and the other for an outstanding contribution to number theory. The prize is named after Frank Nelson Cole, who served the Society for 25 years. The Cole Prize in algebra was funded by Cole himself, from funds given to him as a retirement gift; the prize fund was later augmented by his son, leading to the double award.
The prizes recognize a notable research work in algebra (given every three years) or number theory (given every three years) that has appeared in the last six years. The work must be published in a recognized, peer-reviewed venue.. The first award for algebra was made in 1928 to L. E. Dickson, while the first award for number theory was made in 1931 to H. S. Vandiver.
For full citations, see external links.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Representation theory is a branch of mathematics that studies abstract algebraic structures by representing their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essence, a representation makes an abstract algebraic object more concrete by describing its elements by matrices and their algebraic operations (for example, matrix addition, matrix multiplication).
Robert Phelan Langlands, (ˈlæŋləndz; born October 6, 1936) is a Canadian mathematician. He is best known as the founder of the Langlands program, a vast web of conjectures and results connecting representation theory and automorphic forms to the study of Galois groups in number theory, for which he received the 2018 Abel Prize. He was an emeritus professor and occupied Albert Einstein's office at the Institute for Advanced Study in Princeton, until 2020 when he retired.
In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers a, b, and c satisfy the equation an + bn = cn for any integer value of n greater than 2. The cases n = 1 and n = 2 have been known since antiquity to have infinitely many solutions. The proposition was first stated as a theorem by Pierre de Fermat around 1637 in the margin of a copy of Arithmetica. Fermat added that he had a proof that was too large to fit in the margin.
We prove that the Kloosterman sum changes sign infinitely often as runs over squarefree moduli with at most 10 prime factors, which improves the previous results of Fouvry and Michel, Sivak-Fischler and Matomaki, replacing 10 by 23, 18 and 15, respectively ...