In geophysics, a magnetic anomaly is a local variation in the Earth's magnetic field resulting from variations in the chemistry or magnetism of the rocks. Mapping of variation over an area is valuable in detecting structures obscured by overlying material. The magnetic variation (geomagnetic reversals) in successive bands of ocean floor parallel with mid-ocean ridges was important evidence for seafloor spreading, a concept central to the theory of plate tectonics. Magnetic anomalies are generally a small fraction of the magnetic field. The total field ranges from 25,000 to 65,000 nanoteslas (nT). To measure anomalies, magnetometers need a sensitivity of 10 nT or less. There are three main types of magnetometer used to measure magnetic anomalies: The fluxgate magnetometer was developed during World War II to detect submarines. It measures the component along a particular axis of the sensor, so it needs to be oriented. On land, it is often oriented vertically, while in aircraft, ships and satellites it is usually oriented so the axis is in the direction of the field. It measures the magnetic field continuously, but drifts over time. One way to correct for drift is to take repeated measurements at the same place during the survey. The proton precession magnetometer measures the strength of the field but not its direction, so it does not need to be oriented. Each measurement takes a second or more. It is used in most ground surveys except for boreholes and high-resolution gradiometer surveys. Optically pumped magnetometers, which use alkali gases (most commonly rubidium and caesium) have high sample rates and sensitivities of 0.001 nT or less, but are more expensive than the other types of magnetometers. They are used on satellites and in most aeromagnetic surveys. In ground-based surveys, measurements are made at a series of stations, typically 15 to 60 m apart. Usually a proton precession magnetometer is used and it is often mounted on a pole. Raising the magnetometer reduces the influence of small ferrous objects that were discarded by humans.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (26)
Magnetic Sensors: Fluxgate and Reed Relay
Explores magnetic sensors like fluxgate and reed relay, emphasizing their applications in measuring weak magnetic fields and as on/off sensors based on magnetic attraction.
Magnetic Sensors: Principles and Applications
Explores magnetic sensors' principles, materials, applications, and sensor sensitivity in measuring magnetic fields.
Isolated Magnetic Moments: Magnetic Susceptibility
Explores the concept of magnetic susceptibility as a tensor of proportionality between magnetization and the magnetizing field.
Show more
Related concepts (14)
Geomagnetic reversal
A geomagnetic reversal is a change in a planet's magnetic field such that the positions of magnetic north and magnetic south are interchanged (not to be confused with geographic north and geographic south). The Earth's field has alternated between periods of normal polarity, in which the predominant direction of the field was the same as the present direction, and reverse polarity, in which it was the opposite. These periods are called chrons. Reversal occurrences are statistically random.
Geomagnetic pole
The geomagnetic poles are antipodal points where the axis of a best-fitting dipole intersects the surface of Earth. This theoretical dipole is equivalent to a powerful bar magnet at the center of Earth, and comes closer than any other point dipole model to describing the magnetic field observed at Earth's surface. In contrast, the magnetic poles of the actual Earth are not antipodal; that is, the line on which they lie does not pass through Earth's center.
Ørsted (satellite)
Ørsted is an Earth science satellite launched in 1999 to study the earth's geomagnetic field. It is Denmark's first satellite, named after Hans Christian Ørsted (1777–1851), a Danish physicist and professor at the University of Copenhagen, who discovered electromagnetism in 1820. The spacecraft's primary science objectives are to perform highly accurate and sensitive measurements of the geomagnetic field and to perform global monitoring of the high energy charged particle environment.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.