Summary
In statistics and business, a long tail of some distributions of numbers is the portion of the distribution having many occurrences far from the "head" or central part of the distribution. The distribution could involve popularities, random numbers of occurrences of events with various probabilities, etc. The term is often used loosely, with no definition or an arbitrary definition, but precise definitions are possible. In statistics, the term long-tailed distribution has a narrow technical meaning, and is a subtype of heavy-tailed distribution. Intuitively, a distribution is (right) long-tailed if, for any fixed amount, when a quantity exceeds a high level, it almost certainly exceeds it by at least that amount: large quantities are probably even larger. Note that there is no sense of the "long tail" of a distribution, but only the property of a distribution being long-tailed. In business, the term long tail is applied to rank-size distributions or rank-frequency distributions (primarily of popularity), which often form power laws and are thus long-tailed distributions in the statistical sense. This is used to describe the retailing strategy of selling many unique items with relatively small quantities sold of each (the "long tail")—usually in addition to selling fewer popular items in large quantities (the "head"). Sometimes an intermediate category is also included, variously called the body, belly, torso, or middle. The specific cutoff of what part of a distribution is the "long tail" is often arbitrary, but in some cases may be specified objectively; see segmentation of rank-size distributions. The long tail concept has found some ground for application, research, and experimentation. It is a term used in online business, mass media, micro-finance (Grameen Bank, for example), user-driven innovation (Eric von Hippel), knowledge management, and social network mechanisms (e.g. crowdsourcing, crowdcasting, peer-to-peer), economic models, marketing (viral marketing), and IT Security threat hunting within a SOC (Information security operations center).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (3)
CS-420: Advanced compiler construction
Students learn several implementation techniques for modern functional and object-oriented programming languages. They put some of them into practice by developing key parts of a compiler and run time
CS-401: Applied data analysis
This course teaches the basic techniques, methodologies, and practical skills required to draw meaningful insights from a variety of data, with the help of the most acclaimed software tools in the dat
CS-250: Algorithms I
The students learn the theory and practice of basic concepts and techniques in algorithms. The course covers mathematical induction, techniques for analyzing algorithms, elementary data structures, ma
Related publications (46)
Related concepts (8)
Heavy-tailed distribution
In probability theory, heavy-tailed distributions are probability distributions whose tails are not exponentially bounded: that is, they have heavier tails than the exponential distribution. In many applications it is the right tail of the distribution that is of interest, but a distribution may have a heavy left tail, or both tails may be heavy. There are three important subclasses of heavy-tailed distributions: the fat-tailed distributions, the long-tailed distributions, and the subexponential distributions.
Zipf's law
Zipf's law (zɪf, ts͡ɪpf) is an empirical law that often holds, approximately, when a list of measured values is sorted in decreasing order. It states that the value of the nth entry is inversely proportional to n. The best known instance of Zipf's law applies to the frequency table of words in a text or corpus of natural language: Namely, it is usually found that the most common word occurs approximately twice as often as the next common one, three times as often as the third most common, and so on.
Pareto principle
The Pareto principle states that for many outcomes, roughly 80% of consequences come from 20% of causes (the "vital few"). Other names for this principle are the 80/20 rule, the law of the vital few, or the principle of factor sparsity. Management consultant Joseph M. Juran developed the concept in the context of quality control and improvement after reading the works of Italian sociologist and economist Vilfredo Pareto, who wrote about the 80/20 connection while teaching at the University of Lausanne.
Show more