In probability theory, heavy-tailed distributions are probability distributions whose tails are not exponentially bounded: that is, they have heavier tails than the exponential distribution. In many applications it is the right tail of the distribution that is of interest, but a distribution may have a heavy left tail, or both tails may be heavy.
There are three important subclasses of heavy-tailed distributions: the fat-tailed distributions, the long-tailed distributions, and the subexponential distributions. In practice, all commonly used heavy-tailed distributions belong to the subexponential class, introduced by Jozef Teugels.
There is still some discrepancy over the use of the term heavy-tailed. There are two other definitions in use. Some authors use the term to refer to those distributions which do not have all their power moments finite; and some others to those distributions that do not have a finite variance. The definition given in this article is the most general in use, and includes all distributions encompassed by the alternative definitions, as well as those distributions such as log-normal that possess all their power moments, yet which are generally considered to be heavy-tailed. (Occasionally, heavy-tailed is used for any distribution that has heavier tails than the normal distribution.)
The distribution of a random variable X with distribution function F is said to have a heavy (right) tail if the moment generating function of X, MX(t), is infinite for all t > 0.
That means
This is also written in terms of the tail distribution function
as
The distribution of a random variable X with distribution function F is said to have a long right tail if for all t > 0,
or equivalently
This has the intuitive interpretation for a right-tailed long-tailed distributed quantity that if the long-tailed quantity exceeds some high level, the probability approaches 1 that it will exceed any other higher level.
All long-tailed distributions are heavy-tailed, but the converse is false, and it is possible to construct heavy-tailed distributions that are not long-tailed.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.
We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.
In probability theory, a distribution is said to be stable if a linear combination of two independent random variables with this distribution has the same distribution, up to location and scale parameters. A random variable is said to be stable if its distribution is stable. The stable distribution family is also sometimes referred to as the Lévy alpha-stable distribution, after Paul Lévy, the first mathematician to have studied it. Of the four parameters defining the family, most attention has been focused on the stability parameter, (see panel).
In statistics and business, a long tail of some distributions of numbers is the portion of the distribution having many occurrences far from the "head" or central part of the distribution. The distribution could involve popularities, random numbers of occurrences of events with various probabilities, etc. The term is often used loosely, with no definition or an arbitrary definition, but precise definitions are possible. In statistics, the term long-tailed distribution has a narrow technical meaning, and is a subtype of heavy-tailed distribution.
In probability and statistics, a compound probability distribution (also known as a mixture distribution or contagious distribution) is the probability distribution that results from assuming that a random variable is distributed according to some parametrized distribution, with (some of) the parameters of that distribution themselves being random variables. If the parameter is a scale parameter, the resulting mixture is also called a scale mixture.
The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions such as Quantum Electrodynamics.
We discuss a set of topics that are important for the understanding of modern data science but that are typically not taught in an introductory ML course. In particular we discuss fundamental ideas an
Biology is becoming more and more a data science, as illustrated by the explosion of available genome sequences. This course aims to show how we can make sense of such data and harness it in order to
One major challenge in distributed learning is to efficiently learn for each client when the data across clients is heterogeneous or non iid (not independent or identically distributed). This provides a significant challenge as the data of the other client ...
Two related methods for inverting line-integrated measurements are presented in this research paper in the context of the recent deuterium-tritium experiments in the JET tokamak. Unlike traditional methods of tomography, these methods rely on making use of ...
TAYLOR & FRANCIS INC2023
, ,
Outliers in discrete choice response data may result from misclassification and misreporting of the response variable and from choice behaviour that is inconsistent with modelling assumptions (e.g. random utility maximisation). In the presence of outliers, ...