Cellulosic ethanol is ethanol (ethyl alcohol) produced from cellulose (the stringy fiber of a plant) rather than from the plant's seeds or fruit. It can be produced from grasses, wood, algae, or other plants. It is generally discussed for use as a biofuel. The carbon dioxide that plants absorb as they grow offsets some of the carbon dioxide emitted when ethanol made from them is burned, so cellulosic ethanol fuel has the potential to have a lower carbon footprint than fossil fuels. Interest in cellulosic ethanol is driven by its potential to replace ethanol made from corn or sugarcane. Since these plants are also used for food products, diverting them for ethanol production can cause food prices to rise; cellulose-based sources, on the other hand, generally do not compete with food, since the fibrous parts of plants are mostly inedible to humans. Another potential advantage is the high diversity and abundance of cellulose sources; grasses, trees and algae are found in almost every environment on Earth. Even municipal solid waste components like paper could conceivably be made into ethanol. The main current disadvantage of cellulosic ethanol is its high cost of production, which is more complex and requires more steps than corn-based or sugarcane-based ethanol. Cellulosic ethanol received significant attention in the 2000s and early 2010s. The United States government in particular funded research into its commercialization and set targets for the proportion of cellulosic ethanol added to vehicle fuel. A large number of new companies specializing in cellulosic ethanol, in addition to many existing companies, invested in pilot-scale production plants. However, the much cheaper manufacturing of grain-based ethanol, along with the low price of oil in the 2010s, meant that cellulosic ethanol was not competitive with these established fuels. As a result, most of the new refineries were closed by the mid-2010s and many of the newly founded companies became insolvent.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (1)
ENG-618: Biomass conversion
The learning outcomes are to get to know the biomass ressources and its characteristics; study of biomass conversion pathways and study of process flow-sheets; establish the flow diagram of an industr
Related lectures (14)
Biomass Conversion: Biomethanation and Fermentation
Explores biomass conversion into biogas, biofuels, and ethanol through biomethanation and fermentation processes.
Biomass Conversion and Hydrogen Storage
Covers biomass conversion, hydrogen storage, catalyst properties, porous materials, metal hydrides, and DOE targets for hydrogen storage.
Sustainable Mobility: Technologies, Energy Policies, and Transition
Explores challenges and successes in green mobility, road transport impact on CO2 emissions, sector distribution of emissions, and strategies for emission reduction.
Show more
Related publications (154)

Development of Sustainable Carbohydrate-Based Solvents by Acetal Functionalisation of Biomass

Anastasiia Komarova

Organic solvents are ubiquitous in industrial and domestic applications from the production of pharmaceuticals to household consumer products. The negative impact of most traditional solvents, especially aprotic types, on the environment, health, and safet ...
EPFL2024

Design and Synthesis of Bio-based Amphiphiles from Lignocellulosic Biomass

Songlan Sun

In the pursuit of a carbon-neutral chemical industry, minimizing fossil feedstock consumption while integrating renewable carbon sources is imperative. Surfactants, inherently amphiphilic, pose challenges in separation and recovery processes. Given their e ...
EPFL2024

New Polymers from Biomass-Derived Hydroxycinnamic Acid Derivatives

Ghezae Tekleab

Polymers play a central role in shaping our world across various fields, but their heavy reliance on petrochemicals poses climate change, environmental and health risks. To address and alleviate these issues, transitioning to sustainable polymers, sourced ...
EPFL2024
Show more
Related concepts (17)
Lignocellulosic biomass
Lignocellulose refers to plant dry matter (biomass), so called lignocellulosic biomass. It is the most abundantly available raw material on the Earth for the production of biofuels. It is composed of two kinds of carbohydrate polymers, cellulose and hemicellulose, and an aromatic-rich polymer called lignin. Any biomass rich in cellulose, hemicelluloses, and lignin are commonly referred to as lignocellulosic biomass. Each component has a distinct chemical behavior.
Energy crop
Energy crops are low-cost and low-maintenance crops grown solely for renewable bioenergy production (not for food). The crops are processed into solid, liquid or gaseous fuels, such as pellets, bioethanol or biogas. The fuels are burned to generate electrical power or heat. The plants are generally categorized as woody or herbaceous. Woody plants include willow and poplar, herbaceous plants include Miscanthus x giganteus and Pennisetum purpureum (both known as elephant grass).
Bagasse
Bagasse (bəˈɡæs ) is the dry pulpy fibrous material that remains after crushing sugarcane or sorghum stalks to extract their juice. It is used as a biofuel for the production of heat, energy, and electricity, and in the manufacture of pulp and building materials. Agave bagasse is similar, but is the material remnants after extracting blue agave sap. The word comes from bagasse (French) and bagazo (Spanish), meaning refuse or trash. It originally referred to the material left after pressing olives, palm nuts, and grapes.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.