Concept

Orientation (vector space)

Related concepts (17)
Dual basis
In linear algebra, given a vector space with a basis of vectors indexed by an index set (the cardinality of is the dimension of ), the dual set of is a set of vectors in the dual space with the same index set I such that and form a biorthogonal system. The dual set is always linearly independent but does not necessarily span . If it does span , then is called the dual basis or reciprocal basis for the basis . Denoting the indexed vector sets as and , being biorthogonal means that the elements pair to have an inner product equal to 1 if the indexes are equal, and equal to 0 otherwise.
Multivector
In multilinear algebra, a multivector, sometimes called Clifford number, is an element of the exterior algebra Λ(V) of a vector space V. This algebra is graded, associative and alternating, and consists of linear combinations of simple k-vectors (also known as decomposable k-vectors or k-blades) of the form where are in V. A k-vector is such a linear combination that is homogeneous of degree k (all terms are k-blades for the same k).
Bivector
In mathematics, a bivector or 2-vector is a quantity in exterior algebra or geometric algebra that extends the idea of scalars and vectors. If a scalar is considered a degree-zero quantity, and a vector is a degree-one quantity, then a bivector can be thought of as being of degree two. Bivectors have applications in many areas of mathematics and physics. They are related to complex numbers in two dimensions and to both pseudovectors and quaternions in three dimensions.
Hodge star operator
In mathematics, the Hodge star operator or Hodge star is a linear map defined on the exterior algebra of a finite-dimensional oriented vector space endowed with a nondegenerate symmetric bilinear form. Applying the operator to an element of the algebra produces the Hodge dual of the element. This map was introduced by W. V. D. Hodge. For example, in an oriented 3-dimensional Euclidean space, an oriented plane can be represented by the exterior product of two basis vectors, and its Hodge dual is the normal vector given by their cross product; conversely, any vector is dual to the oriented plane perpendicular to it, endowed with a suitable bivector.
Exterior algebra
In mathematics, the exterior algebra, or Grassmann algebra, named after Hermann Grassmann, is an algebra that uses the exterior product or wedge product as its multiplication. In mathematics, the exterior product or wedge product of vectors is an algebraic construction used in geometry to study areas, volumes, and their higher-dimensional analogues. The exterior product of two vectors and , denoted by is called a bivector and lives in a space called the exterior square, a vector space that is distinct from the original space of vectors.
Real coordinate space
In mathematics, the real coordinate space of dimension n, denoted Rn or , is the set of the n-tuples of real numbers, that is the set of all sequences of n real numbers. Special cases are called the real line R1 and the real coordinate plane R2. With component-wise addition and scalar multiplication, it is a real vector space, and its elements are called coordinate vectors. The coordinates over any basis of the elements of a real vector space form a real coordinate space of the same dimension as that of the vector space.
Reflection (mathematics)
In mathematics, a reflection (also spelled reflexion) is a mapping from a Euclidean space to itself that is an isometry with a hyperplane as a set of fixed points; this set is called the axis (in dimension 2) or plane (in dimension 3) of reflection. The image of a figure by a reflection is its in the axis or plane of reflection. For example the mirror image of the small Latin letter p for a reflection with respect to a vertical axis (a vertical reflection) would look like q.
Principal homogeneous space
In mathematics, a principal homogeneous space, or torsor, for a group G is a homogeneous space X for G in which the stabilizer subgroup of every point is trivial. Equivalently, a principal homogeneous space for a group G is a non-empty set X on which G acts freely and transitively (meaning that, for any x, y in X, there exists a unique g in G such that x·g = y, where · denotes the (right) action of G on X).
Right-hand rule
In mathematics and physics, the right-hand rule is a common mnemonic for understanding the orientation of axes in three-dimensional space. It is also a convenient method for quickly finding the direction of the cross product of two vectors. Rather than a mathematical fact, it is a convention, closely related to the convention that rotation around a vertical axis is positive if it is counterclockwise and negative if it is clockwise. Most left-hand and right-hand rules arise from the fact that the three axes of three-dimensional space have two possible orientations.
Rotation (mathematics)
Rotation in mathematics is a concept originating in geometry. Any rotation is a motion of a certain space that preserves at least one point. It can describe, for example, the motion of a rigid body around a fixed point. Rotation can have a sign (as in the sign of an angle): a clockwise rotation is a negative magnitude so a counterclockwise turn has a positive magnitude. A rotation is different from other types of motions: translations, which have no fixed points, and (hyperplane) reflections, each of them having an entire (n − 1)-dimensional flat of fixed points in a n-dimensional space.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.