Concept

Homological algebra

Related concepts (54)
Projective object
In , the notion of a projective object generalizes the notion of a projective module. Projective objects in are used in homological algebra. The dual notion of a projective object is that of an injective object. An in a category is projective if for any epimorphism and morphism , there is a morphism such that , i.e. the following diagram commutes: That is, every morphism factors through every epimorphism . If C is , i.e.
Quasi-isomorphism
In homological algebra, a branch of mathematics, a quasi-isomorphism or quism is a morphism A → B of chain complexes (respectively, cochain complexes) such that the induced morphisms of homology groups (respectively, of cohomology groups) are isomorphisms for all n. In the theory of , quasi-isomorphisms are sometimes used as the class of weak equivalences when the objects of the category are chain or cochain complexes. This results in a homology-local theory, in the sense of Bousfield localization in homotopy theory.
Graded-commutative ring
In algebra, a graded-commutative ring (also called a skew-commutative ring) is a graded ring that is commutative in the graded sense; that is, homogeneous elements x, y satisfy where |x | and |y | denote the degrees of x and y. A commutative (non-graded) ring, with trivial grading, is a basic example. An exterior algebra is an example of a graded-commutative ring that is not commutative in the non-graded sense. A cup product on cohomology satisfies the skew-commutative relation; hence, a cohomology ring is graded-commutative.
Normal morphism
In and its applications to mathematics, a normal monomorphism or conormal epimorphism is a particularly well-behaved type of morphism. A normal category is a category in which every monomorphism is normal. A conormal category is one in which every epimorphism is conormal. A monomorphism is normal if it is the of some morphism, and an epimorphism is conormal if it is the of some morphism. A category C is binormal if it's both normal and conormal. But note that some authors will use the word "normal" only to indicate that C is binormal.
Subquotient
In the mathematical fields of and abstract algebra, a subquotient is a quotient object of a subobject. Subquotients are particularly important in abelian categories, and in group theory, where they are also known as sections, though this conflicts with in category theory. In the literature about sporadic groups wordings like " is involved in " can be found with the apparent meaning of " is a subquotient of ." A quotient of a subrepresentation of a representation (of, say, a group) might be called a subquotient representation; e.
Godement resolution
The Godement resolution of a sheaf is a construction in homological algebra that allows one to view global, cohomological information about the sheaf in terms of local information coming from its stalks. It is useful for computing sheaf cohomology. It was discovered by Roger Godement. Given a topological space X (more generally, a topos X with enough points), and a sheaf F on X, the Godement construction for F gives a sheaf constructed as follows. For each point , let denote the stalk of F at x.
Hyperhomology
In homological algebra, the hyperhomology or hypercohomology () is a generalization of (co)homology functors which takes as input not objects in an but instead chain complexes of objects, so objects in . It is a sort of cross between the derived functor cohomology of an object and the homology of a chain complex since hypercohomology corresponds to the derived global sections functor . Hyperhomology is no longer used much: since about 1970 it has been largely replaced by the roughly equivalent concept of a derived functor between derived categories.
Global dimension
In ring theory and homological algebra, the global dimension (or global homological dimension; sometimes just called homological dimension) of a ring A denoted gl dim A, is a non-negative integer or infinity which is a homological invariant of the ring. It is defined to be the supremum of the set of projective dimensions of all A-modules. Global dimension is an important technical notion in the dimension theory of Noetherian rings.
Operator algebra
In functional analysis, a branch of mathematics, an operator algebra is an algebra of continuous linear operators on a topological vector space, with the multiplication given by the composition of mappings. The results obtained in the study of operator algebras are often phrased in algebraic terms, while the techniques used are often highly analytic. Although the study of operator algebras is usually classified as a branch of functional analysis, it has direct applications to representation theory, differential geometry, quantum statistical mechanics, quantum information, and quantum field theory.
Coherent duality
In mathematics, coherent duality is any of a number of generalisations of Serre duality, applying to coherent sheaves, in algebraic geometry and complex manifold theory, as well as some aspects of commutative algebra that are part of the 'local' theory. The historical roots of the theory lie in the idea of the adjoint linear system of a linear system of divisors in classical algebraic geometry. This was re-expressed, with the advent of sheaf theory, in a way that made an analogy with Poincaré duality more apparent.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.