In graph theory, a circle graph is the intersection graph of a chord diagram. That is, it is an undirected graph whose vertices can be associated with a finite system of chords of a circle such that two vertices are adjacent if and only if the corresponding chords cross each other.
gives an O(n2)-time algorithm that tests whether a given n-vertex undirected graph is a circle graph and, if it is, constructs a set of chords that represents it.
A number of other problems that are NP-complete on general graphs have polynomial time algorithms when restricted to circle graphs. For instance, showed that the treewidth of a circle graph can be determined, and an optimal tree decomposition constructed, in O(n3) time. Additionally, a minimum fill-in (that is, a chordal graph with as few edges as possible that contains the given circle graph as a subgraph) may be found in O(n3) time.
has shown that a maximum clique of a circle graph can be found in O(n log2 n) time, while
have shown that a maximum independent set of an unweighted circle graph can be found in O(n min{d, α}) time, where d is a parameter of the graph known as its density, and α is the independence number of the circle graph.
However, there are also problems that remain NP-complete when restricted to circle graphs. These include the minimum dominating set, minimum connected dominating set, and minimum total dominating set problems.
The chromatic number of a circle graph is the minimum number of colors that can be used to color its chords so that no two crossing chords have the same color. Since it is possible to form circle graphs in which arbitrarily large sets of chords all cross each other, the chromatic number of a circle graph may be arbitrarily large, and determining the chromatic number of a circle graph is NP-complete. It remains NP-complete to test whether a circle graph can be colored by four colors. claimed that finding a coloring with three colors may be done in polynomial time but his writeup of this result omits many details.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In graph theory, an intersection graph is a graph that represents the pattern of intersections of a family of sets. Any graph can be represented as an intersection graph, but some important special classes of graphs can be defined by the types of sets that are used to form an intersection representation of them. Formally, an intersection graph G is an undirected graph formed from a family of sets by creating one vertex v_i for each set S_i, and connecting two vertices v_i and v_j by an edge whenever the corresponding two sets have a nonempty intersection, that is, Any undirected graph G may be represented as an intersection graph.
In graph theory, a path decomposition of a graph G is, informally, a representation of G as a "thickened" path graph, and the pathwidth of G is a number that measures how much the path was thickened to form G. More formally, a path-decomposition is a sequence of subsets of vertices of G such that the endpoints of each edge appear in one of the subsets and such that each vertex appears in a contiguous subsequence of the subsets, and the pathwidth is one less than the size of the largest set in such a decomposition.
In graph theory, the treewidth of an undirected graph is an integer number which specifies, informally, how far the graph is from being a tree. The smallest treewidth is 1; the graphs with treewidth 1 are exactly the trees and the forests. The graphs with treewidth at most 2 are the series–parallel graphs. The maximal graphs with treewidth exactly k are called k-trees, and the graphs with treewidth at most k are called partial k-trees. Many other well-studied graph families also have bounded treewidth.
Familiariser l'étudiant avec le travail au laboratoire. Travailler de façon quantitative et/ou qualitative.
TP réalisés en relation avec les cours de chimie de 1ere année et complémentaires avec le c
Delves into Bayesian Knowledge Tracing and Learning Curves, exploring the prediction of student knowledge over time and the importance of accurate performance measurement.
An integer linear program is a problem of the form max{c^T x : Ax=b, x >= 0, x integer}, where A is in Z^(n x m), b in Z^m, and c in Z^n.Solving an integer linear program is NP-hard in general, but there are several assumptions for which it becomes fixed p ...
EPFL2023
The main goal of this paper is to formalize and explore a connection between chromatic properties of graphs defined by geometric representations and competitivity analysis of on-line algorithms. This connection became apparent after the recent construction ...
We prove that for any triangle-free intersection graph of n axis-parallel line segments in the plane, the independence number alpha of this graph is at least alpha n/4+ohm(root n). We complement this with a construction of a graph in this class satisfying ...