Concept

Chen's theorem

In number theory, Chen's theorem states that every sufficiently large even number can be written as the sum of either two primes, or a prime and a semiprime (the product of two primes). It is a weakened form of Goldbach's conjecture, which states that every even number is the sum of two primes. The theorem was first stated by Chinese mathematician Chen Jingrun in 1966, with further details of the proof in 1973. His original proof was much simplified by P. M. Ross in 1975. Chen's theorem is a giant step towards the Goldbach's conjecture, and a remarkable result of the sieve methods. Chen's theorem represents the strengthening of a previous result due to Alfréd Rényi, who in 1947 had shown there exists a finite K such that any even number can be written as the sum of a prime number and the product of at most K primes. Chen's 1973 paper stated two results with nearly identical proofs. His Theorem I, on the Goldbach conjecture, was stated above. His Theorem II is a result on the twin prime conjecture. It states that if h is a positive even integer, there are infinitely many primes p such that p + h is either prime or the product of two primes. Ying Chun Cai proved the following in 2002: Tomohiro Yamada claimed a proof of the following explicit version of Chen's theorem in 2015: In 2022, Matteo Bordignon implies there are gaps in Yamada's proof, which Bordignon overcomes in his PhD. thesis.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.