Goldbach's conjecture is one of the oldest and best-known unsolved problems in number theory and all of mathematics. It states that every even natural number greater than 2 is the sum of two prime numbers.
The conjecture has been shown to hold for all integers less than 4e18, but remains unproven despite considerable effort.
On 7 June 1742, the German mathematician Christian Goldbach wrote a letter to Leonhard Euler (letter XLIII), in which he proposed the following conjecture:
Goldbach was following the now-abandoned convention of considering 1 to be a prime number, so that a sum of units would indeed be a sum of primes.
He then proposed a second conjecture in the margin of his letter, which implies the first:
eine jede Zahl, die grösser ist als 2, ein aggregatum trium numerorum primorum sey.
Every integer greater than 2 can be written as the sum of three primes.
Euler replied in a letter dated 30 June 1742 and reminded Goldbach of an earlier conversation they had had ("... so Ew vormals mit mir communicirt haben ..."), in which Goldbach had remarked that the first of those two conjectures would follow from the statement
This is in fact equivalent to his second, marginal conjecture.
In the letter dated 30 June 1742, Euler stated:
Dass ... ein jeder numerus par eine summa duorum primorum sey, halte ich für ein ganz gewisses theorema, ungeachtet ich dasselbe nicht demonstriren kann.That ... every even integer is a sum of two primes, I regard as a completely certain theorem, although I cannot prove it.
Each of the three conjectures above has a natural analog in terms of the modern definition of a prime, under which 1 is excluded.
A modern version of the first conjecture is:
A modern version of the marginal conjecture is:
And a modern version of Goldbach's older conjecture of which Euler reminded him is:
These modern versions might not be entirely equivalent to the corresponding original statements.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
This course covers the statistical physics approach to computer science problems ranging from graph theory and constraint satisfaction to inference and machine learning. In particular the replica and
Machine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
In mathematics, the Riemann hypothesis is the conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part 1/2. Many consider it to be the most important unsolved problem in pure mathematics. It is of great interest in number theory because it implies results about the distribution of prime numbers. It was proposed by , after whom it is named.
In mathematics, analytic number theory is a branch of number theory that uses methods from mathematical analysis to solve problems about the integers. It is often said to have begun with Peter Gustav Lejeune Dirichlet's 1837 introduction of Dirichlet L-functions to give the first proof of Dirichlet's theorem on arithmetic progressions. It is well known for its results on prime numbers (involving the Prime Number Theorem and Riemann zeta function) and additive number theory (such as the Goldbach conjecture and Waring's problem).
A 'twin prime is a prime number that is either 2 less or 2 more than another prime number—for example, either member of the twin prime pair or In other words, a twin prime is a prime that has a prime gap of two. Sometimes the term twin prime is used for a pair of twin primes; an alternative name for this is prime twin' or prime pair. Twin primes become increasingly rare as one examines larger ranges, in keeping with the general tendency of gaps between adjacent primes to become larger as the numbers themselves get larger.
We provide here some probabilistic interpretations of the generalized binomial distributions proposed by Gazeau et al. ["Generating functions for generalized binomial distributions," J. Math. Phys. 53, 103304 (2012)]. In the second part, we prove the "stro ...
Alternative splicing, an unknown mechanism 20 years ago, is now recognized as a major mechanism for proteome and transcriptome diversity, particularly in mammals-some researchers conjecture that up to 90% of human genes are alternatively spliced. Despite m ...
We construct a bipartite Euler system in the sense of Howard for Hilbert modular eigenforms of parallel weight two over totally real fields, generalizing works of Bertolini-Darmon, Longo, Nekovar, Pollack-Weston, and others. The construction has direct app ...