Rutherford backscattering spectrometry (RBS) is an analytical technique used in materials science. Sometimes referred to as high-energy ion scattering (HEIS) spectrometry, RBS is used to determine the structure and composition of materials by measuring the backscattering of a beam of high energy ions (typically protons or alpha particles) impinging on a sample.
Geiger–Marsden experiment
Rutherford backscattering spectrometry is named after Lord Rutherford, a physicist sometimes referred to as the father of nuclear physics. Rutherford supervised a series of experiments carried out by Hans Geiger and Ernest Marsden between 1909 and 1914 studying the scattering of alpha particles through metal foils. While attempting to eliminate "stray particles" they believed to be caused by an imperfection in their alpha source, Rutherford suggested that Marsden attempt to measure backscattering from a gold foil sample. According to the then-dominant plum-pudding model of the atom, in which small negative electrons were spread through a diffuse positive region, backscattering of the high-energy positive alpha particles should have been nonexistent. At most small deflections should occur as the alpha particles passed almost unhindered through the foil. Instead, when Marsden positioned the detector on the same side of the foil as the alpha particle source, he immediately detected a noticeable backscattered signal. According to Rutherford, "It was quite the most incredible event that has ever happened to me in my life. It was almost as incredible as if you fired a 15-inch shell at a piece of tissue paper and it came back and hit you."
Rutherford interpreted the result of the Geiger–Marsden experiment as an indication of a Coulomb collision with a single massive positive particle. This led him to the conclusion that the atom's positive charge could not be diffuse but instead must be concentrated in a single massive core: the atomic nucleus. Calculations indicated that the charge necessary to accomplish this deflection was approximately 100 times the charge of the electron, close to the atomic number of gold.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Delves into electron-proton scattering to probe the proton's structure through elastic and deep inelastic processes, form factors, and higher energy interactions.
The Rutherford model was devised by the New Zealand-born physicist Ernest Rutherford to describe an atom. Rutherford directed the Geiger–Marsden experiment in 1909, which suggested, upon Rutherford's 1911 analysis, that J. J. Thomson's plum pudding model of the atom was incorrect. Rutherford's new model for the atom, based on the experimental results, contained new features of a relatively high central charge concentrated into a very small volume in comparison to the rest of the atom and with this central volume containing most of the atom's mass.
In particle physics, Rutherford scattering is the elastic scattering of charged particles by the Coulomb interaction. It is a physical phenomenon explained by Ernest Rutherford in 1911 that led to the development of the planetary Rutherford model of the atom and eventually the Bohr model. Rutherford scattering was first referred to as Coulomb scattering because it relies only upon the static electric (Coulomb) potential, and the minimum distance between particles is set entirely by this potential.
Materials science is an interdisciplinary field of researching and discovering materials. Materials engineering is an engineering field of finding uses for materials in other fields and industries. The intellectual origins of materials science stem from the Age of Enlightenment, when researchers began to use analytical thinking from chemistry, physics, and engineering to understand ancient, phenomenological observations in metallurgy and mineralogy. Materials science still incorporates elements of physics, chemistry, and engineering.
Charged particles entering a crystal close to some preferred direction can be trapped in the electromagnetic potential well existing between consecutive planes or strings of atoms. This channeling effect can be used to extract beam particles if the crystal ...
Closed-shell atoms scattered from a metal surface exchange energy and momentum with surface phonons mostly via the interposed surface valence electrons, i.e., via the creation of virtual electron-hole pairs. The latter can then decay into surface phonons v ...
Block copolymers are comprised of repeating chemical groups (blocks) which commonly contain at least one hydrophilic block coupled to at least one hydrophobic block, forming an amphipathic macromolecule. This molecular arrangement drives the self assembly ...