We consider the problem of defining and fitting models of autoregressive time series of probability distributions on a compact interval of Double-struck capital R. An order-1 autoregressive model in this context is to be understood as a Markov chain, where ...
Efficient sampling and approximation of Boltzmann distributions involving large sets of binary variables, or spins, are pivotal in diverse scientific fields even beyond physics. Recent advances in generative neural networks have significantly impacted this ...
Deep learning has revolutionized the field of computer vision, a success largely attributable to the growing size of models, datasets, and computational power.
Simultaneously, a critical pain point arises as several computer vision applications are deploye ...
This study compares three imputation methods applied to the field observations of hydraulic head in subsurface hydrology. Hydrogeological studies that analyze the timeseries of groundwater elevations often face issues with missing data that may mislead bot ...
Natural language processing has experienced significant improvements with the development of Transformer-based models, which employ self-attention mechanism and pre-training strategies. However, these models still present several obstacles. A notable issue ...
We present a framework for performing regression when both covariate and response are probability distributions on a compact and convex subset of Rd. Our regression model is based on the theory of optimal transport and links the conditional Fr'echet m ...
Studies on urban environmental quality are evolving emphasizing the need for policy response concerning the enactment of environmental regulations to attain sustainable development goals (SDGs), mainly target 13. Over the years, the concerns to improve urb ...
Cerebrovascular reactivity (CVR), defined as the cerebral blood flow response to a vasoactive stimulus, is an imaging biomarker with demonstrated utility in a range of diseases and in typical development and aging processes. A robust and widely implemented ...
We derived computationally efficient average response models of different types of cortical neurons, which are subject to external electric fields from Transcranial Magnetic Stimulation. We used 24 reconstructions of pyramidal cells (PC) from layer 2/3, 24 ...
Autoregressive Neural Networks (ARNNs) have shown exceptional results in generation tasks across image, language, and scientific domains. Despite their success, ARNN architectures often operate as black boxes without a clear connection to underlying physic ...